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ABSTRACT

This report discusses the autonomous orbit control system launched aboard
the synchronous communications satellite LES-6 in late 1968. The topics
presented include the motivation for automatic orbit control, the measure-
ment techniques, observability and controllability, the design of a variable
limit-cycle system, automatic station acquisition, simulation, and testing.
The history of the development of this control system is emphasized, and

the early flight results are discussed.
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AUTOMATIC ORBIT CONTROL
OF THE LINCOLN EXPERIMENTAL SATELLITE LES-6

I. INTRODUCTION

1“or several years, satellites have been used to establish radio eommunication links between
stations located on the surface of the earth. Radio signals transmitted by one station are re-
ceived by the satellite, amplified, and retransmitted to one or more terminal points on the
ground. Normally, line-of-sight transmission is required, so that only those stations which
would be visible to a hypothetical observer on the satellite can be connected by this type of radio
link,

A major requirement for any communications system is that the link between stations be
uninterrupted, so that transmission of information between the terminals is possible at all times.
This need has led to the introduction of "synchronous" satellites which revolve around the earth
at an average angular rate equal to that at which the earth spins around its polar axis. As is
well known, the orbital period of a satellite is related to its total energy, which in turn is a func-
tion of the orbital inajor axis. 1y appropriately choosing the latter, the satellite pertod can be
made equal to one sidereal day. Furthermore, if the orbit is equatorial and circular, the sat-
ellite is geostationary, or motionless, relative to an observer on the earth. It follows that one
way of avoiding interruption of transmission due to the motion of the satellite with respect to the
ground terminals is to place the spacecraft in a circular, equatorial, synchronous orbit.

Unfortunately, this ideal situation cannot be achieved permanently. A synchronous satellite
is subject to forces which tend to displace it from the geostationary position:ll_5 a stable syn-
chronous orbit exists at only two earth longitudes, about 107° West (over the PPacific Ocean) and
73° East (over the Indian Ocean). In general, the satellite has a long-term pendular motion about
the initial synchronous position, which must be opposed by a thruster on the satellite. On the
first synchronous satellites, the thruster was commanded by a signal from the ground, after a
difference between the actual and the desired satellite positions had been detected by tracking,
until the desired drift velocity and position were obtained.

A completely automatic and self-contained technique has been realized for the first time on
the lL.incoln Experimental Satellite ILES-6, a conimunications satellite that was launched success-
fully on 26 September 1968. In this system, the angular position error is measured on the satel-
lite itself and thrusters are fired according to a correction sequence determined by a digital con-
troller on board. This approach (a) eliminates tracking and commanding, and (b) is potentially
more aceurate than the ground-command method. The satellite can also be made to acquire new
longitudinal positions by changing an internal reference, so that it can follow new stations in a
preprogrammed sequence or upon receipt of simple instructions from the ground.

The use of an Automatic Orbit Control system significantly reduces the need for ground
tracking. We believe that this is a primary economic incentive to the use of these techniques in
the future. To appreciate the fact, it is instruetive to consider our own experience in determin-
ing the orbit of 1.LES-6, using a 30-foot UHF antenna in Lexingtcn, Massachusetts. The data re-
corded by the ground station are satellite range, obtained from the round-trip time of a signal
sent through the satellite repeater, and elevation and azimuth angles, derived directly (and
rather inaccurately) by pointing the antenna for maximum received signal. These measurements,

which last several minutes, are repeated hourly for 30 consecutive hours and are then processed



by an Orbit Determination Program, which performs a least-square fit on the data to yield one
value of satellite position and drift. This orbit determination is thus a non-trivial burden, which
of course becomes more significant as the number of satellites to be tracked increases, or when
the ground station must be used for purposes other than satellite tracking. Ground station sat-
uration is, therefore, one of the problems that Automatic Orbit Control, done directly from the
satellite, will alleviate.

The second advantage of an Automatic Orbit Control system, i.e., that of accuracy, is still
to be proven. In fact, one major aim in launching the LLES-6 system has been to collect infor-
mation that will enable us to design high-accuracy second generation systems. Our goal on
LLES-6 was a rather modest +2 degrees in steady-state longitude accuracy: this is amply suffi-
cient for earth-coverage microwave systems, and is indeed very satisfactory, as is known to
those who have experience in synchronous satellite orbit control. The longitudinal accuracy
which can be achieved with ground tracking techniques depends on (a) the orbit determination
accuracy, and (b) the time interval between corrections. The Syncom satellites, for example,
have achieved accuracies of 2 degrees, with corrections about every 30 days. If the orbit is
measured and controlled directly from the satellite, the constraints imposed on the correction
interval by ground station limitations are removed. Greater orbit control accuracy is important
for satellites using narrow-beam, i.e., high-gain, antennas. A sccond incentive for accurate
longitude control is connected to the use of many synchronous satellites closely spaced in longi-
tude: in the future there will be a problem of allocation of "synchronous orbit space," especially
in the neighborhood of some preferred longitudes. In this report we discuss some preliminary
statistical results obtained from sun and earth sensors.

The work that is presented here refers to near-circular orbits, and the flight data were col-
lected from the synchronous equatorial satellite LES-6. However, these ideas, and those which
will develop from our own and others' experience, will probably be applied to other types of or-
bits. Earth-resources satellites and large unmanned orbital platforms may become a reality.
As the number of active satellites increases and improvements in solar power systems lengthen
their useful lives, on-board control of the orbit parameters will become increasingly important.
The acceptance of automatic techniques depends, of course, on their rcliability. At the time of
this writing, the Automatic Orbit Control system of LLES-6 had operated properly for eleven
months. During this time, the Pulsed Plasma Thrusters operated for about 3,500 hours. We
hope to be able to demonstrate that the system can control the orbit automatically for several
years.

Automatic orbit control has not been attempted until now, although self-contained methods
have been proposed in the literature by several authors. Some of these studies include applica-
tions of filtering theory, especially Kalman's, to this problem. The explanation of the delay in
realization lies, at least in part, in the complexity of the orbit determination techniques which
had been proposed until recently. Reliability, weight, and power limitations have made all the
systems proposed impractical for today's communications satellites,

It is interesting to review briefly the development of self-contained navigation ideas, which
naturally center around the problem of determining the orbit from autonomous data. A good gen-

’

eral survey up to 1965 is made by (}ansler,6 who considers the classic distinction between pre-

liminary determination and updating of the orbit.! The existing literature on the subject of

1 Gansler's evoluatian of the characteristics of o "typicol " self-cantained navigotian system, excluding the pro-
pulsion equipment, is that it will weigh 87 pounds and require 218 watts. The LES-6 system weighs 4 pounds
and uses 120 milliwatts,



on-board orbit determination falls in three categories: (a) discussions of instruments with which
to observe satellite position and dynamic coordinates, {(b) elaborations of the orbit equations,

(c) applications of filtering theory, especially Kalman's. The first group includes the many types
of sensors, star trackers, inertial platforms, and dynamometers which have been proposed but
will not be discussed here. The best paper in the second group is by Gersten and Schwar‘zbein,8
who give formulas for the orbital elements as a function of various combinations of measure-
ments of satellite altitude, anomaly, and velocity components. The difficulty is that the rela-
tionships are transcendental equations which, even if expressed in closed form, require relatively
sophisticated computation systems to obtain reasonable accuracy. The same authors examined
some additional cases9 in which intervals of time as well as dynamic coordinates are measured;
they suggest that the equation of motion be solved repeatedly for different values of orbital major
axis until the time measurements agree with the computed results. McAllister and \Vagner‘m
give the equations of motion for impulsive perturbations of the dynamic coordinates of a satellite
in a circular orbit as a state transition matrix. Several authors apply Kalman's statistical fil-
tering theor‘y“_zo to the determination of orbits. Battin13 also solved the problem of selecting
the best star to use as a reference in making angular measurements. Irazier, et a_l.,14 examined
the possibility of approximating the values of satellite anomaly and the subtense of the principal
body with polynomials in time and found that, in general, it is preferable to use the linearized
form of thc known dynamic equations to smooth the data, leading to more complex data process-
ing requirements.

In 1965, W. E. Morrow of lLincoln l.aboratory proposed that a simple combination of sun
and earth sensors could be used to determine the satellite "high-noon" position in orbit; a stable
oscillator could furnish an appropriate reference for the motion in sidereal space of any earth
meridian, and the correction for sun transit time effects could be pcrformed digitally on board.
Shortly thereafter, the author, while studying the problem of the automatic pointing of a com-
munication antenna from a near-circular orbit to earth, proposed simple methods of orbit detcr-
mination and reconstruction21 which were particularly suited for implementation on a satellite.
The present LES-6 Automatic Orbit Control system has evolved from these ideas.

Section Hl of this report discusses the longitudinal perturbations of synchronous satellite
orbits. Section Il deals with the orbit determination problem, for small eccentricity orbits;
solutions rcquiring linear combinations of times of flight are discussed. Section IV examines
the observability and controllability issues from the point of view of modern control theory.
Section V describes the finite-state controller which was actually flown on [.LEES-6 and discusses
the automatic station-acquisition maneuver. Section VI deals briefly with the hardware imple-
mentation, the simulation studies, the choice of the integration routines and step size, the ran-
dom and deterministic error simulation, and the testing of the flight system. Scction VII dis-

cusses the dynamic behavior in orbit and several statistical hypotheses on sensor errors.

II. EFFECTS OF EQUATORIAL ELLIPTICITY ON SYNCHRONOUS ORBITS

The influence of the asymmetries of the earth's gravitational potential on the motion of sat-

ellites has bcen studied by several authors. For equatorial synchronous satellites, the most

important effect is that due to the "equatorial eccentricity T which is of the order of 10_5. We

t One should consider thot this is simply o canvenient woy of interpreting the measured gravitotional patential in
the equatarial plane. In foct, far an eccentricity of 1072, the difference between mojar ond minor semiaxes is
anly abaut 380 feet.
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Fig. 1. Reference system for elliptic earth.

dius of the earth, J2

collect here some of the important results, fol-
lowing mainly Ref.1. We further develop the
"weak coupling" approximation and show it to
be valid for the satellite motion sampled once
per day.

Stable synchronous orbits exist only at the
two longitudes which correspond to the minor
axis of the equatorial ellipse. The longitudes
along the major axis are unstable equilibrium
points. At all other longitudes, the satellite is
subject to a drift acceleration and its motion
exhibits a long-term pendular motion, depend-
ent on the initial conditions, about a stable point.
According to recent determinations, the minor
Let r,A be

defined as in 17ig. 1, and let 6 be the satellite

axis is located at about 73° East.

colatitude. Further, R = mean equatorial ra-

= coefficient of the second zonal harmonic of the earth (which is related to

the polar oblateness), and v = ellipticity of the equator.

The kinetic energy in a coordinate frame which rotates rigidly with the earth at angular

speed w is

i = a4 r"z + i rzéz + d r‘2 sinze (5\ + w)z s (I1-1)
2 2 2
; . 22
and the potential energy can be written
2
JoR 2
v==-=HF]1- 2 (3 C0529_1)+7R sinze cos 2A (11-2)
T 2 2
2r 2r
We wish to find stationary solutions r = ros A = , ©0=0 From l.agrange's equations,

d 2
dt qu

oo
(T=V) = 5o (T = V)

dqy

(11-3)

(where a is any of the dynamic coordinates r, A, ©) follows, for the stationary case,

J

'qu

(T-V)=0 ,

and hence the equations

( 5 3l R
r wsin“e - £ 4 (3 cos®
o 2 4
r 2ir
o 0
2
pR ) : B
0% r3 sin eo sm27\o 0 .
o
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WRZ
v cos 27\0 smzeo = 10

B 3pyR2

sinze cos2x =0 g
o o
21‘0

(11-4)

(11-5)

(11-6)



The last equation has the solutions eo = 0 and 7/2, of which the last, corresponding to equa-
torial orbits, is acceptable. (This can be seen on physical grounds, or by introducing the solu-
tion eo = 0 in the previous cquations and checking that no solution exists for ro.) Then, from
(11-5), stationary points are found to exist at longitudes 0, n/2, =, (3/2) v (measured from the ma-
jor axis of the equatorial ellipse). The values of ro which correspond to these solutions are

found from

2
3ud, R 2
2 2 3yuR =
row” s S + 7 + 4 (11-7)
I 2r 2i
o o o

(the positive sign corresponds to the points on the ellipse major axis}. To discuss the stability
of these solutions, we write l.agrange's equations and linearize about the stationary points.

The following three equations result easily:

7

2
b, R 2
z 2u 2 6py R 2. B
rs— 1+ 23+ G + >—g | W Ty 2row7\6-0 5 (11-8)
W w'r W
o o) o/
o Zy}lRZ w
)\6:1:—-5 A6+2 = r6=0 s (I11-9)
r o)
o
2
3t R 2
2 ypR 2 . _
66+ 1+ 3 5 £ 55 weé—O N (11-10)
wr wr

in which the subscript 6 indicates that the variables are variations around the stationary values.
The third equation is decoupled from the first two. The motion in © is harmonic with frc-
quency w/27, i.e., with daily period, given the orders of magnitude of the quantities involved.
To discuss the stability of the other two coupled equations, we find the eigenvalues of the
system, in which we can make approximations remembering that p/o.)2 =~ r03 (this can be obtaincd
by equating the centrifugal and gravitational accelerations in synchronous orbit) and that .12 and

vy << 1. Then the system reduces to

s 2 2
r6—3w r6—210w7\6 0 N (11-11)
2w - e R\ 2, _
ELI S Sy (F) wh =0 . (11-12)
o o
Using opcrator notation, the equations for the system arc
2 2 N
(p~ — 3w”) zZy —21"0(4)pz2 =oh (11-13)
2w 2 2 .
a pz, + (p” +t cw™) 2, = o |, (11-14)

where ¢ = 2y (R/ro)z, from which the eigenvalues are the solutions of the characteristic equation

p4 + wzpz F 3(‘.0;4 =0 (11-15)



or

oo =’ ¢ @° TE e ..
. . i

4_-3cw2 = by (;)2 wz . (I1-16)

o

The first solutions (2jw) are oscillatory. The second set implies instability when positive
sign applies (major axis) and stability in the other case (minor axis). The solutions then include
a daily component (at frequency w) and a slow oscillation with period

T--0_1 . _6.63

R
Ney Ne x107°

By solving the system with appropriate initial conditions, Blitzer, et al., find that the trajectory

~ 850 days

in the rotating coordinate frame is a very elongated ellipse about the stable longitude. The samc
study shows computer results for the complete (nonlinear) equations of motion. Since that anal-
ysis was made, the observations of synchronous satellites have confirmed its validity.T

It is interesting to discuss a further approximation to the system [(II-8), (I1-9), (II-10)],
which we shall call "weak coupling" and which is very important for the applications. If we as-

sume r_ small, we can write

5
Swrg +2ro>\6= 0 , (11-17)
2w - Lok R \2 2% =
Be i K% a2y (If) wht=0 . (11-18)

From the first equation it is
};*
2 6
e (=19
This cquation can be obtained from first principles, namely, from Kepler's third law. It relates
small changes in period to small changes in semimajor axis. Taking the time derivative of

(11-17) and substituting in (11-18),

2250 R \2 2% =
XE T 6y (F(;) e =0 (11-20)

Thus, we have obtained a second-order equation in the variable Aé which is decoupled from the
equation in rg and which has the correct long-term motion with frequencies * '\/_6—7 (R/ro) w in
the stable case.

One is then led to consider what happcens if 7\5 is sampled once a day, i.c., if thc daily com-
ponent in the solutions is desregarded. In order to check that indecd thc variables A:‘;, r('; of the
weak- coupling approximation are the values of 7\5' s sampled once pcr day, wc can proceed as
follows.

The gencral solution for the linearized system [Egs. (II-11) and (II-12)] in the stable case is

obtained easily

t It must be noted that luni=solar perturbatians alter this picture by effectively changing the synchronous semi-
major axis. Clased arbits na langer exist even at the "stable" paints,
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)\6 A1c +A20 + 131e +B20 (11-21)
r i 3 3 %
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N
where
o ~ N6y 'I—{ << 1
o
l.et us consider only the values at times t = nTS, where '1‘S Zn/w, n=0,1,2,... . In particular,

we can select the initial value (that is to say, the phase of the sampling) so that

/\1 —A‘2 =0 . (11-23)
Consider then the values of Y }:6‘ and }\6 at the sampling times. which we indicate with a star:
vt _j% N7 R (1;10302’”‘ —nzo‘j“”“] ) (11-24)
i = 4 % NT Rlaw)? (B, el Y20 _ g e )O2T0) (11-25)
M= jow (n1oj“’2’m - 1;2o‘~i”2”“] . (I1-26)

Remembering the definition of «, we obtain that wzr':; and w)\é are of order '\/7, while Ié is of
order ('\/7)3 and therefore negligible in (11-8). Thus, we can conclude that if one uses as var-
iables the radius and the geocentric longitude observed once per day, one can study the satellite
drift in a neighborhood of the minor axis from the simple decoupled ligs. (11-19) and (11-20).

The previous equations and conclusions apply to motion in a neighborhood of the stationary
points. [t is important to establish the weak-coupling approximation for all values of longitude A.
[.et us linearize about the values £ and all derivatives equal zero, treating A as a finite quan-

tity. Then lqg. (I[-8) remains unchanged, while (I}1-9) becomes

it - . ypl{z
T g s A+ j‘ sin2x = 0, (11-27)
0

an equation which is nonlinear in A, lL.et us consider linearized solutions to the previous equa-

tion. [For A ~ )\O we can write

. 2 C

s 3w Lo = Zrow)\é =0 B (11-28)
2w . 5 yuRk®

a 1'6 + >\6 = — T Sln2>\o 3 (”—29)

The characteristic equation is found easily,

pt twPplan (11-30)

and the general solution is
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Sampling at t = nT_ - (21/w) n,
3 R 2
Aé(n[‘):(Ai+A2+Bi)+BZnT+—2— r5 s1n2>\o~ (nT) ; (11-33)
o
Thus the longitude sampled once per day satisfies the differential equation
3'yp1{2
7‘5_ S s1n2>\o=0 ; (11-34)

r
(o]

We can write the general solution to (II-27) by letting the coefficients of the linearized solu-

tion, kEq. (I1-31), be functions of time:

s - o . 2
AE(t) = l)o +D1(t) t+1)2(t) it s (1-35)
where the eoefficients Di(t)’ l)z(t) are determined by choosing different values for }\o. Then we

ean conelude that the weak-eoupling approximation is valid for the nonlinear equation

- Wk
X () — %_ sin2a® =0 . (11- 36)

r
(o]

This is the well-known "pendulum equation" of elementary dynamies. l'or small exeursions
of X*, the linearized approximation, leading to parabolic motion, Iq. (II-33), can be used. As
we shall see, the pendulum equation is very useful in practice, sinee the motion of the satellite
is thus rcduccd to a one-dimensional problem. Thc radius vector is still given by (11-19). It ean
further be shown3 that considering the higher-order tesseral harmonics does not essentially

modify these eonclusions.

III. SIMPLE METHODS TO DETERMINE NEAR-CIRCULAR ORBITS
A. General Principles

Since elliptic orbits ean be described by any set of suffieient parameters, we wish to use
parameters whieh are most easily measured with on-board instrumentation. The orbit can then
be controlled by maintaining these parameters at a referenee value: the computation problem,
and the measurement and eontrol problems are treated as a whole. The desired control aeceu-
racy determines the precision necessary in the measurement and in the computations, and this
in turn affects the choiee of the technique of orbit determination. The methods summarized here
only require linear combinations of measured times of flight. The results arc obtained from
well-known expansions of the law of motion in terms of the orbital eccentricity € to terms of the
third order. Scveral propcrties of the seeond-order solution, which are of great practical inter-
est, are diseussed. These techniques can also be applied to the determination of the center of

the earth from the satellitc21 and to eircularize an orbit automatically, as seen in the following.




Sinee, as we have seen, the out-of-plane perturbations of the motion of the satellite’ are de-
eoupled from the motion in the orbit plane, we study plane motion only.

The instrumentation needed for the measurements eonsists of an earth sensor, a sun or star
sensor, and a clock. The earth sensor must determine the direction of the center of the earth,
or loeal vertieal, and ean be an infrared or optieal sensor.z‘?’_25 If an optieal sensor is used,
eleetronic proeessing of its output is necessary to correct for the variation of apparent width of
the earth as the earth-satellite- sun angle ehanges. The sensor is relatively simple if the orbit
is nearly eireular, so tnat the earth's angular subtense varies little in time, and if the semimajor
axis equals a few earth radii. The determination of the loeal vertical when these two eonditions
are not satisfied requires more sophistieated sensors. The diffieulty of this measurement per-
mits one to state that the preeision of orbit determination from the satellite is at present essen-
tially determined by the aeeuraey with whieh the loeal vertieal can be established. Several types
of sun and star sensors have been used or proposed, the latter being potentially more aeeurate,
but more eomplex than the former. Star sensors are generally used in a eontinuous tracking
mode, rather than discontinuously on spinning satellites. The advantages of using star trackers
are that the angular subtense of stars is much smaller than the sun's and that for all praetieal
purposes they can be considered a true inertial referenee. The clock, a very aeeurate and stable
oscillator, in gencral uses a temperature-eontrolled quartz crystal; long-term stability of one
part in 10 million ean be obtained on today's satellites.

The planes of sight of both the earth and sun sensors are typieally perpendieular to the or-
bital plane, eontain the spin axis of the satellite, and form an angle 6. As the satellite spins,

the sun and earth sensors deliver two trains

of pulses which in general do not occur at the suN T 3-63-8048-1

same time. llowever, for any given orbit, an-
gular separation of the sensors,and position of
the sun, there is one point P in orbit at whieh
the pulse trains from the two sensors are in
phase (Fig.2). 1lf another sun sensor is used
together with the earth sensor, at an angular
separation 6', a seeond point P' ean be estab-
lished in orbit. Alternatively, one eould use
two earth sensors and one sun sensor. Thus /

each combination of three sensorsis an orbital

angle finder, which together with a elock can T

measure the time in whieh the satellite sweeps ORBIT PLANE

N
the known angle PEP'. If the sun, rather than

Fig. 2. Measurement af times af flight,
a star, is used as a reference, its angular mo-

tion relative to the orbit must be taken into aeeount. In the case of an elliptic orbit, the argu-
ment (or angular coordinate) of the points P and P', relative to perigee, changes day by day
beeause the projection of the sun line on the orbital plane moves with yearly period and beeause
of perigee preeession. The orbital angle finder and the cloek, in measuring the time of flight of
the satellite betwcen points in orbit, essentially measure the average angular veloeity of the sat-

ellite as it sweeps angles of known width.

1t is well knawn that the arbital plane of an earth satellite is perturbed mainly by luni-salar effects and by the
spherical harmanics in the geapatential. The magnitude of these perturbatians depends an the arbit cansidered.



Expanding the law of motion26 in powers of the eccentricity e,
wt =0 -0, —2¢[sin(0) —sin@®,)] + 3 % [sin(20) —sin(20,)] (111-1)

where © = satellite argument measured from perigee, w = orbital radian frequency 0 = Go for
t=0.

APOGEE

Fig. 3. Measurement points
for orbit reconstruction.

3-63-8045-2

E e

Consider the times in which the satellite sweeps three consecutive 90° sectors in orbit, de-
fined by points Pi’ PZ’ P3, and P4 (Fig. 3), and let eo be the argument at Pi' The satcllite

therefore moves from P1 to P, in a time interval t, such that

2 4

NIE

wt, =

' —2e{sin(@, + ) - sin(@ )] + 2 [sin@e_ + m) - sin@e6 )] . (Il-2)

4

Writing similarly the time intervals tZ’ t3 in which the satellite travels from PZ to P3 and P3 to

P4, respectively, and taking linear combinations of the equations, one finds the (first-order)

parameters:
i et _
€ sm(eo) =6 [cu(t1 tt,) ]l (111-3)
1
€ cos(eo) =i fm— cu(t2 + t3)] . (111-4)

The quantities w, € sin(eo), € cos (eo) can be used as sufficient parameters, from which
g cos (ZGO) can be determined. However, since this computation is not easily implemented,
ez sin (zeo) are considered additional (second-order) parameters for the equation of motion; this
is legitimate, since enough independent measurements of times of flight can be made.

To obtain the second-order parameters independently, the time t* in which the satellite
travels at 45° sector from P1 to P' (Fig. 3) is measured, being

FNE]

wtt = § —2e[sin(O, + 2= sin(6,)] - % e [cos (26,)—sin(26)] . (111-5)

Using this result and the previous equations, after some simplifications, the reconstruction of

the law of motion in terms of these measurements is

10
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i —t > [2 —(t2 +13)]sm(u~t) t 5 [(t1 +12) 2] [cos (wt) — 1]
L3 1
5 3—22 1 1+22 :’:.__l . 1 (s
+ 3 2 11 +E 12 + 4 t3 — g 2 sin(2wt)
ST
+ 1z [—2—- (t1 + 1.3)] [cos (2wt) — 1] (I11-6)

to third order in ¢. This expression involves only weighed sums and differences of the times
of flight, as cocfficients of the harmonic terms.

Some simple properties of the second-order reconstruction of the orbit are of practical in-
terest because satellites are often placed in circular orbits around the principal body. Return-
ing to (1t1-2) and dropping the terms in (2,

: T =
a.(tz—t3) 5 € (‘OS(OO) ) u,(l1 tz) ) (111-7)

. 1

€ sm(@o) 7
which are more compact forms of (111-3) and (I111-4) for the second-order case. These expres-
sions can be used to rewrite (111-6) for this case. The orbit reconstruction is now particularly
simple, being

1

) sin(wt) + 5 (t

> —tz) [1 —cos(wt)] . (I111-8)

3

An interesting second~-order property is that the times t', t'" in which the satellite sweeps

any two angles, both of width A© and opposed with respect to the focus are, to second order in «,

wi' = AB - 2¢ [sin(O + AB) —sin(0 )] (1t1-9)

wt'' = AO + 2¢ [sin(O  + A0) —sin(O )] (111-10)

(o]

and, therefore,
T =r(t'+ ") /a0 . (H1-11)

This equation provides alternate ways of measuring the period for quasi-circular orbits and is
particularly simple if A@ is an integer fraction of a revolution. To second order in ¢, clearly

it is also
1 ' e
w = (w' 4+ ') ) (HH=-12)

where w' and «''" are instantaneous angular velocities at two points in orbit opposed with respect
to the focus.

As has been seen, the initial condition on the orbit is established by observing the time of
coincidence of the outputs of a sun or star sensor and an earth sensor. If the sun is used as a
reference, the on-board clock must be a solar clock, i.e., it must keep into account the variation
of the transit time of the sun over a meridian of the satellite. If the orbital reconstruction is
done on a day-by-day basis, it is sufficient for some applications to consider the mean sun mo-
tion, thus, one can use a constant-speed clock and correct for the mean sun motion either in car-
rying out the computation or by altering the angular distance of the sensors on the satellite by an
appropriate amount. I}, on the other hand, the initial conditions in each orbit must be accurately

known for several years (e.g., for stationkeeping), it is necessary to use a true solar clock,
D% 2
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which can be implemented electronically. When the satellite spins about an axis which is not
parallel to the earth's, the satellite's true solar time differs from the earth's (see Appendix A).
In determining the initial conditions on elliptic orbits for many consecutive days, one must
consider the motion of the line apsides, which causes the point of coincidence between sensor
outputs to move day by day along the orbit. Furthermore, if the sun is used as a reference, the
point of coincidence moves with the projection of the sun line along the orbit. Thus, if the time
coincidence occurs at point P1 on the first orbit, it occurs at PZ, 1’3, - =il on successive orbits.

Then, the n-th coincidence will occur at a time

tn = nT + At (wn,eo)

Lven though a true solar time is used, the fact that the angle . is traveled on an elliptic orbit

is cause of a measurement error. The error varies as

0 e sin(qon) (rad)

to second order in «.

If the measurement is continued for a year or more, so that N varies from 0 to 27, the
peak-to-peak error is 6p-p ~ 228 ¢ (deg).

A simple way of eliminating this measurement error to second order in ¢ is then to repeat
the determination of the initial condition twice per orbit at two points 180° apart and to take the
arithmetic average of the two determinations.f This technique should be employed also when a

star trackcr is used in the orbital goniometer to eliminate the effect of apsidal line motion.

B. Application to Automatic Orbit Circularization

As an application of these ideas, we shall describe a system that would automatically reduce

el The controller is of the null-seeking type, requires little computation on the satetlite, and

Fig. 4. Automatic circularization
technique.

1 o T
< B e [3-63- 8085~ 1

does not interact with the control of the satellite daily longitude. The orbital position is meas-

ured at points 1’1, PZ’ 1’3, 1’4, 90° apart (Fig. 4), with a system of angle-finders of the type
which has been described previously. l.et t1, 12, 13, and t4 be the times in which the satellite

t U.S. Patent Applicatian 643493, filed 5 June 1967.

 This system has not been implemented an LES-6.
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moves along four consecutive 90° sectors. Instead of eomputing the argument of apogee, the
quadrant in which apogee is located with respect 1o the measured positions can be determined by

noting that when t, = max t (i - 1,2, 3,4), apogee is between I’, and P with the convention

h h+1’
apogee is at P

h
that h + 1 = 1 for h = 4. In the boundary case, 11 12 : t3, 1
and 1’4. Thus, the position of apogee is determined qualitatively

and similar relations
hold when apogee is at PZ’ P3,
without eomputations, using onlv comparisons of times of flight.

The longitude (stationkeeping) control thrust is applied symmetrically about the orbital focus
so that the eeeentricity is not modified,} 1or convenience, if Fp is the impulsive stationkeeping
eontrol thrust along the orbit tangent, 1/4 Fp shall be applied four times per orbit, at points 1’1
through P4. To change the orbital eccentricity without affeeting the satellite period, the net
tangential force applied during one orbit must be zero. A eontrol aetion +1~‘e is applied, at eaeh
of the two fix points which encompass apogee, followed by an action —Fo at the two points encom-
passing perigee. This system of forces il“e tends to circularize the orbit and does not modify
the satellitle per'iod.23 In the boundary eases, the control aetion is modified simply. The timme
comparisons are repeated, and the corrective action Jcl"e is applied until ti = th (lilntis= 4y, 02,8540,
within the limits of aecuracy of the sensors. Fe can be designed to satisfy fuel constraints or
other requirements. 1If the stationkeeping corrections Fp and the circularizing eorreetion tFC
are superimposed, the system of forces shown in I'ig. 4 results.

To determine the preeision of this technique, the differenees between times of flight are

written to second order in ¢

wlt, ~t,| = 4¢| cos (e )|

w |t —t3|—4<[sin(oo); . (111-13)

P
The control system operates to reduce the measured differences to zero, or

w(t -0 0 5

--t2)+o >

1 1

-0 0 p (111-14)

w(t 3

2—t3) +to

2
where o, is the angular error made in measuring the corresponding 90° sector.
If o, is further written as

o, =0, +¢0 ’ L& 0, 152,

i.e., as the sum of a zero-mean and a systematic component, it follows that this control tech-
nique is insensitive to systematic angle errors. It is interesting to see what €. one would have

from a constant measurement error 0y =0, "0, 0 o. Then from (itt-14),

2 2 3

o =4e |coste)| . o=4c Isin@)]

(1 rad), or
1

Gy o/8%

t This statement is proved in Sec.IV,
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IV. OBSERVABILITY AND CONTROLLABILITY OF NEAR-CIRCULAR ORBITS

In this section, the dynamic problem of perturbations of near-circular orbits is discusscd
from the point of view of modern control theory. The problem of observability and controllability

i R. Brockett's results are the most com-

has been studied by several authors independently.
plete and arc used in parts A and B of this section. In part €, we discuss the meaning of the
loss of controllability which occurs when the orbit equations are sampled once per day. Wec show
that the symmetric thrusting policy which was discussed in Sec. lII does not change the orbital
eccentricity. This, together with a constraint which is shown to exist bectween the uncontrolled
variables, permits us to show that this thrust policy lcads to a lLiapunov-stable system (i.e., one
in which the uncontrolled variables cannot exceed a bound, which is proportional to the initial
eccentricity). Thus we prove the fcasibility of controlling the satcllite longitude using observa-
tions appropriately made once per orbital period, and reconcile the classical approach presentec

in Secs. It and II1 and the point of view of modern control theory.

A. The Continuous Case

[.et us consider the orbit equations in the case in which a small acceleration u is imparted

to the satellite by on-board thirrustcrs. If we call U, Uy, Ug

namic coordinates r, rOA, roe, the linearized equations of motion [(11-8), (1-9), (11-10)] become

the thirree components along the dy-

vs 3w Vs 21'0¢u}\6 uy F (IV-1)
r'())\é + Zmor'(5 uz ) (Vv =2)
rd. 4+ '"20 u (1V =3)
06 o Ys S

where we have considered the spherical components of the carth's potential only, since we can

superimpose the perturbations as long as the linearized equations hold.

I'aking as variables Xy I xz S v .\:3 "0)\6' .\;4 I'O)\(S’ x,5 x'()O(S, ‘6 r-()()(s, the matrix
form of the resulting differential equation is
x(t) = Ax(t) + Bu (1V -4)
with
0 il 0 0 0 0
2
3w 0 0 2w 0 0
0 0 0 1 0 0
A (tv -5)
0 2a 0 0 0 0
0 0 0 0 0 1
L 0 0 0 0 uJZ 0
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and

o o o]
1 0 0
0 0 0
13 (1V-6)
0 1 0
0 0 0
0 0 1j

One can solve the equation by laplace transformation and fiad with casy steps

[ ] [ 1 2 177
= w
X e —— o 0 l
g sz + wz %(s2 4 wz) :
2 2
" 2w s - 3w y
Noil = |—= = =7 0 ! (1vV=7)
3 ';(‘s‘Z ! wz) sz(s2 + wz) z
1
\‘3 0 0 5 5 l3
S t w
L J L J [

The natural response of liq. (1V-4) with initial values x(0) is given, in the time domain, by
x(1) - e®x0) (1V-8)
ISk .
where e=" is a n X n matrix,

At -1

et - 1" 1s — )7t

1 0 e y ,
2—7;.—]. ‘8]. (_]_b i\_) is 5 (]\/ -9)

1 being the identity matrix and T' a contour enclosing all the eigenvalues of (Is — A). After some

straightforward but lengthy calculations one oblains

AaD EoES sinwt 0 2(1 -~ cos wi) 0 5
w w
3 wsinwt cos wt 0 2 sinuwt 0 0
. 2(1 = cos wt) (—3wt + 4 stnwit)
6{—wt + sinwt) —_— 1 —— 0 0 "
B E E (1\ =10)
At
o
6w(- 1+ coswt) ~2 sinwt 0 {-3 +4 coswt) 0 0
0 0 0 0 cos wt (BinEL)
w
0 0 0 0 —-w sinwt (‘us‘.n_J
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The solution of the foreed equation
x(1) = Ax(t) + Bu(t) (1v-11)
is given by
A(l) b Aft-0)
x(t) = e~ 'x(0) + g‘ (o Bu(o) do . (1V-12)
S0

[.et us consider now the observability of the linearized, near-eircular equations of motion
in the continuous case. Since the last two equations in (IV-4) are deeoupled from the others, we
can treat them separately.

As is well known, we must determine the rank of the matrix

L= EEL. ... .. 080Y
whose rows are the rows of C, CA, ete., where Cx is the observed vector. 1f we observe the
radius Xy only,

€, =(1,0,0,00 ,
and

1 0 0o 0]
0 1 0o 0
Ly (1V-13)
%
3w 0 0 2w
0 —m* o B

Sinee rank [I,1] = 3 and the state vector x is of dimension 4, the system is not observable by
measuring radius (or its derivative) only.
Now consider looking at the © dependent variable X5 Here we have
(_2 =(0,0,1,0) ,

and
0 0 1 0 ]
0 0 0 1
Loy (1V-14)
0 20 0 0
L—(w:3 0 0 —dw?

This matrix is of rank 4 so the system is observable from Xs
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IFor the last equation we have

1 0
Lg = (1V-15)
0o 1
which is nonsingular and therefore ensures the observability of Xg and Xg-

L.et us now consider the controllability of the system described by Eq. (1V-4), which is de-

cided by considering the matrix

K = (B,AB, ..., A" 1p)

If we control from Uy (radial thrust alone),

0 1 0 —wz
1 0 —wz 0
51 = (IV-16)
0 0 —2w 0
0 —2w 0 2w3

Since the rank of this matrix is only 3, control from u, is not possible.

1
In the case where u, is zero and u, is the control, the K matrix takes the form
0 0 2w 0
0 2w 0 =05t
K, = (IV-17)
0 1 0 —4dw
1 0 —4w2 v

This matrix is of rank 4 and hence the system is controllable from u, alone. Thus we see that if
only one thrust component is to be used it should be tangential to the orbit.
For the last two equations we have
0 1
53 = (1v-18)
1 0
whiech is clearly nonsingular. llence uj, can control the out-of-plane motion.

B. The Sampled Case

As we have seen in See. lll, simple combinations of sensors permit us to establish points, or
fixes, in the orbit. Thus we are interested in examining what happens to the orbit equations when

they are sampled onee, twice, and four times per orbit. We also assume that the control u is
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applied only at the sampling times. Then u(kT) is the magnitude of the impulse applied at (kT).
Thus the system is deseribed by the difference equation [from (IV-12)],

A(T) A(T)

x(KT + T) = e=2'"/x(kT) + €2/ Bu(kT) (IV-19)

where T = sampling period = 21r/kw, (k =1,2,4). The transition matrices for the various eases

are easily obtained from the expression of eé(t) (IV-10). These are:

i. For T =2n/w:

_ - T - -
x1 1 0 0 0 0 O x1 0 0 0
x2 0 4 0 0 0 0 XZ 1 0 0
Yy
x —dow ® 1 2% g of | 0o =bT o
3 w 3 w i
(Tk+T) = (KT) + 2| (kT) (IV-20)
x4 0 0 O 1 0 0 X 0 1 0
4
3
x5 0 0 0 0 1 0 x‘5 0 0 0
\:6 0 0 O 0 0 1 x6 LO 0 1
- E - - - = -
ii. For T = 1r/w:
X W 7 0 0 i 0 0 X 0 4~ 0
1 w 1 3]
XZ 0 =i 0 0 0 0 x2 -1 0 0
B —q — 37 —4 37 Yy
x3 671’ 5 1 o 0 0 X3 T D 0
(kT+T) = (KT) + u (kT)
x 126 0 0 -7 0 0 x o -7 o || ?
4 4
e
‘(5 0 0 0 0 -1 0 x5 0 0 0
x6 L 0 0 0 0 0 —1 Lx() L() 0 -1
= = - - = (IV-21)
iii. For T = 7/2w:
1 2 [ 1 2 i
4 &0 0 vis iy =
‘{1 w w g 0 ‘(1 w w 0
x2 3w 0 0 2 0 0 X, 0 2 0
2 (—37 +8) —2 (=37+8)
3 3r+ b —= pie U, —Z m
Ry Tre 5 1 %0 ¢ B | %y W 70 i
(KT+T) x(kT) + u(kT)
Xy —bw -2 0 -3 0 0 X, -2 3 0
X 0 0 0 0 0 —1— X 0 0 3
5 w 5 ]
}\6 0 0 0 0 w 0 ‘(6 0 0 0
s - L - Jd L
(IV-22)
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The z-transform of the responses can be obtained from these transfer matrices. Alterna-
tively, one can start from the Laplace transfer function (IV-7), and find its z-transform for the
appropriate value of T.

Using a tilda to indicate z-transform functions, one obtains easily:

it For T =27/w:

= = 9 7
Xy 0 0 0 u1
~ +61TZ ~
X = o — Ol Ju (Iv-23)
3 2 2
w(z — 1)
|-x5 0 0 0 u3

ii. For T = n/w:

v ] 0 € 2 ol {u
1 w(ZZ— 1) 1
~ =1 +3 ~
¥, | = . 2 iz = o fu, (1IV-24)
wlz” —1) wlz — 1)
Y 0 0 0 us

iii. For T = n/2w:

; r z/w 2 z(z +21) 0 i -Tx 1
1 B ¥z 1) 2" +4) L

4
~ _ —22z(z +1) z [(8 - 3m)2z“— 16z + (8 — 37)] =
= 0 u (IV-25)
2 w(z—i)(zz+1) Zw(zz+1)(zz—1) E
= 0 0 _zlw | |3
g 22+ 1)} 3

= - - - L -

The test for observability and controllability is of the same form as for the continuous case.
Howcver, the A and B matrices must be replaced by the matrices in Eqgs. (IV-20), (IvV-21),
(IV-22) for the different cases. The results of thc calculations are given in Appendix B and
summarized in Table I.

It is intercsting to note at this point that the techniqucs of orbit reconstruction discussed in
Sec. 1IT satisfy the observability test. The flight times between points in orbit depend both on
radius and angle information, as is readily verified. Four measurements of times along the or-
bit are sufficient for complcte observability.

Some recent work30 has addrcsscd itself to the problem of finding optimal solutions (in a

least-squarc sense) to ncar-circular orbit control. For optimum control theory to be really
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TABLE 1
SUMMARY OF CONTROLLABILITY AND OBSERVABILITY PROPERTIES
OF THE LINEARIZED ORBITAL EQUATIONS
Meosurements per Orbit Coniiusis
One Two Four Meosurement
Observing (in-plone)
Rodiol observotions No No No No
Tongentiol observotions No No Yes Yes
Rodiol ond tongentiol No Yes Yes Yes
Control (in-plone)
Rodiol thrust No No No No
Tongentiol thrust No No Yes Yes
Rodiol ond tongentiol No Yes Yes Yes
Observing (out-of-plone)
Orbit normol observotion No No Yes Yes
Control (out-of-plone)
Orbit normol thrust No No Yes Yes

useful, the system must be completely observable and controllable. Thus I. B. Chammas' study
deals with the cases which are completely controllable and observable (see Table t). The cost

function which is minimized is

U
q & (u'u + ay'y) dt
oL -

where y is a lincar transformation of the measured vector x. The author studies the cases in
which (1) o is finite and large and « = 0, for which he finds a time-varying optimal control, and
(2) 0 = © and « 7( 0, for which he finds a constant control law.

The optimal control laws depend on all components of the measurement vector x. While the
instrumentation presently available does not allow us to conveniently measure X, nor x,, it is
nonetheless instructive to consider the optimal control policies as performance bench-marks.

I'uture study should also focus on performance criteria of the type
o
q —\Y (|1_1_| tay'y)dt
o

and constraints of the type

o
Y |1_1l diiastll

(o]

C. Stable Control of the System with Daily Sampling

It is important now to examine the exact meaning of the lack of controllability of the dynamic

equations in the case of one sampling per orbit. It is seen from (IV-23) that the longitudinal
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coordinatc X3 is controllable, while Xy is not. The question therefore arises as to whether it is
possible for Xy to grow without bound when X3 only is controlled. Physically, this would corre-
spond to the orbit becoming increasingly elliptical, while the orbit semimajor axis remains
constant, as required by the fact that X3 is controlled. We shall prove that the double thrusting
policy which was introduced in Sec. 11l has the property that the orbital eccentricity rcmains
constant and equal to its initial value.

From the z-transfer matrix (IV-23), the transfer function between X3 (the longitudinal co-

ordinate) and u, (tangential thrusting) is

Y. - _ bnz s %, . (IV-26)
w(z— 1)

which corresponds to a double integrator. Thus ';(3 is controllable. But controllability of the

longitudinal coordinate sampled once per day means that ';(3 can be driven to zero. This in turn

implics that the orbital period and therefore, by Kepler's third law, the semimajor axis of the
orbit can be made constant.
It is easy to show that for linear expansions of the orbital motion thc semimajor axis equals

: - ; . . . A
the averagc of the radius over one orbit.t Then the semimajor axis must be x, + B and an ex-

1

prcssion for the average over one orbit of x, is found from thc transition equation [sce (1V-10)],

1

B . 1 . 2 o . ;
X, = (4— 3 coswt) :\1(0) + = sin wt xZ(O) + % (1 coswt)x4(0) ) (IV-27)

1
and thus

N

R, = 4x,(0)+ % x,(0) . (1V-28)

. ~ A
If we drive X3 to zero, Xy

cessive samplings the uncontrolled coordinate x

must equal zcro, so that the semimajor axis cquals o Then on suc-

1 is constrained by the equation

~ 1 - I 4
in +5 X4—O 3 (I\.—Zg)

Thus, as was expected on physical grounds, the values of ';(1 and ';(4 are not independent when X3

is controlled to zcro.

Consider now what happens if one samples x, so that its value cquals 2 Then kq. (1V-28)

1 1

becomes

AP}

) +

1 G

4 3 (IV-30)

€l
e

which is the relationship that was established in Scc. lI when samipling was perfornied in such a
manner as to eliminate the daily variation in rs and Fé [see Eq. (1I-19)].

In Sec. 111 we had established that the daily motion (eccentricity dependent) was eliminated
if one observed once per orbit by taking the average of two observations at intervals 7/w. Also,
it was claimed that splitting the thrust value (determined once per orbit) in two equal parts ap-
plied at 7/w intervals maintained the orbital eccentricity at a constant value. To check this, we
usc again the transition matrix (IV-10} and find immediately that thc new observablc

xy = %[x3(0)+x3(£)] (1V-31)

tin genercl,_th_e semimajar axis differs fram the time average of the radius taken during ane orbit (see, for
example, Ref.26).
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does not contain any orbit periodic eomponents. This new observable is thus the mean longitudinal

position.
To find the effect of symmetric thrusting at 7/w intervals on the eccentricity €, we note that
r =i Xy X4 min
¢ ~ _max o _ max _ _ i . (1V-32)

r B r
o o 0

Thus for the eceentricity to be constant it must be T e constant.

IFrom the transition matrix it is easily

3 X0 2 7 ,
- PR 4x1(0) i x4(0) + [ = ] + [3_\'1(0) + 51‘4(0” . (1V-33)

Sinee we control X3, it is because of (1V-29),

X, (02
. 2 2 2 .
*{ max /[ w ] i [3x1(0) S ‘\.1(0” : (IV-34)

From the sampled equations for T = r/w (IV-20) used with the constraint uz(k'l‘ L i) 112(k'l‘) for

k even, one has easily

@ L B -1 B ~ —4 E
% 1 0 0 R =

NS (kT +2T) 6 1 0 STy + | O u, (KT) (1V-135)
X, 0 0 1 X, -6

e . J L] -

which yields

xz(kT 20 = xz(kT) , (IV-36)
and

xltk'I e 21 ) 2 xl(k’l‘) b % uz(k'[‘) ; (IV-37)

x_l(k’[‘ il alh) x4(k’1‘)—6 uz(k'l‘) . (1V-38)

Since X5 remains unchanged and so does the quantity

le + 25 x, (from the last two equations),

4
the eecentrieity remains unchanged beeause of (1V-32) and (IV-34). Thus we have shown that.

when Ny is controlled by thrusting equally at points 180° apart in orbit, the cecentricity is not

changed. Using the eceentricity as a parameter, if the sampling is done so that Xy 0, one has
from (1V-34}), (IV-32), and {(IV-29),

%, =—€r , (IV=39)

% ..Zwero . (1V-40)

for this control poliey.



To coneclude, we have shown how it is possible to control the longitudinal motion of the satel-
lite by sampling once per orbit. The radius is uncontrollable, but constrained to the value of the
longitudinal drift rate by liq. (1V-29). lLquation (11-9), established for an appropriate value of the
sampling phasc, was found again to be valid. 1t was shown how it is possible to ensure that the
eccentricity remain constant and thus that xi(t) and xz(t) be bounded, §1 g s and ;4 = 2k € r
V. ANALYSIS AND DESIGN OF A FINITE-STATE CONTROLLER

A. Preliminaries

Section V describes the design of the controller which was actually flown in LLISS-6. The de-
sign is based on the assumption that only satellite angular position can be measured with the in-
strumentation available. At the time of this design, it was assumed that daily angular drifts of
Iractions of a degree per day could not be measured in practice. A preliminary estimate of
sensor crrors, solar cloek errors, and the coupling of orientation errors into position errors
led to the conclusion that satellite position would not be measured more accurately than about
2 degrees peak-to-peak over long periods of time, with an rms value of 1.3 degrees. It was thus
established that longitude would be measured in a quantized manner and the smallest quantization

window was sect at 2 degrees.

It was also decided, on the basis of the SUN
'si Se / e 5 o 4
analysis of Sees. 1Hland 1V, that we would sam PROJECTION |

ple once per day and observe only the mean ORISUN L'NE:

daily longitudinal position. lFurther, it was SUN SENSOR 1

SENSE
T —

OF ORBITAL
REVOLUTION

decided that the daily observation would con- SEIl

sist of the average of two obscrvations made
at opposite points in orbit (with respect to the

EARTH CENTER "
SENSOR -~
~

carthcenter), to decouple the observationfrom
the daily (eccentricity dependent) motion. 1Mi-
nally, it was decided to thrust symmetrically
with respect to the earth center, so that ec-
; SUN SENSOR 2
centricity, although not controlled, would not
increasce, as discussed in Sec. 1V (sec Fig. 5).

Since drilt velocity was notdirectly meas-

urable, damping of the motion could be a-

]

871

chieved by observing the transitions of the sat-

w

o

ctlite into adjacent two-degree-wide ltongitude

\ / =

’ g St SUN SENSOR { :

bands. This suggested a finite-state machine S \\,iﬂ__T_ELI_TL/ - |
ORBIT

realization of the controller.

The thrusters available on the sateltite Fignd: Mesgtrement ofisoallia poshiven on LES4.
arce of two tvpes: cold-gasthrusters and pulsed
plasma thrusters. The gas thrusters provide a linear acceleration of about 0.35 X 10_5’ m/ sv(‘z
and the plasma thrusters about 0.95 x 10_7 my;se '2.1' These figures arce to be compared to the
lincar acceleration caused by the carth's equatorial ellipticity which is at most 0.545 % 1()-7 m/socz
Thus it was decided that the plasma thrusters would be used only for steady-state tracking, sincce

their maximum effect (in continuous operation) is only about twice the disturbing acceleration at

 Both figures keep into occount the duty-cycle of operarion of the system.
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the worst earth longitude. The need to operate with two widely different thrusters posed an ad-
ditional constraint on the design of the controller. The gas thruster system was, however, con-
sidered the primary system, since there has been no previous flight experience with the plasma
thrusters. As discussed in Sec. VIIl, these were indeed extremely successful and have been used
exelusively, up to the time of this writing, for steady-state station tracking.

The orbit control system of LIS-6 has the following modes of operation:

Command Mode:— Either the gas or plasma thrusters can be operated on conimand

from the ground. The earth direction and the firing angles (with respect to the orbit tangent) are
determined by using on-board sensors. The thrusters shut off automatically after predetermined

time intervals, which can be selected from the ground.

Automatic Mode:— Operation is completely self-contained with either thruster system.

Two modes are available, with automatic switchover: (1) new station acquisition, and (2) station

tracking, with self-contained damping of the relative motion.

In all modes, thrust is applied to the satellite in the direction of the orbit tangent, which for
a circular orbit is normal to the satellite-earth line, determined by an earth sensor. Total im-
pulses of different values are obtained by firing the thrusters for a fixed part of each of several
rotations, the spin rate being measured by sun sensors.

The satellite position is determined using the combination of sun and earth sensors described
in Sec. l1l. Sun sensors were preferred to star sensors because of their simplicity and rugged-
ness. The position of the satellite must then be compared with the position of the ground station
at a given time. Since any earth meridian moves at a constant angular speed in space (disregard-
ing small secular changes of earth rotation rate), an on-board clock can determine the position
of a station of known longitude. The clock delivers a pulse every 12 hours: the time diffecrence
between a clock pulse and the sensor coincidence pulse is then a direct measurement of the longi-
tude displacement. The fact that the satellite position is measured with respect to the sun pro-
jection on the orbit plane requires that the clock be a "true solar clock," which should indicate

the transit time of the sun at the desired ecarth

201 L]
ik ‘; ) RN ] longitude (see Appendix A). This transit time
£ ‘:_ g 5 (ephemeris) displacement is shown in Fig. 6
‘2 ; E ; for the year 1969; secular changes can be dis-
% el : regarded for satellites having a lifetinie of a
;’_‘2 % 1 few years. If the spin axis is normal to the
a 16} é ik orbit and the orbit is equatorial, the true solar
e Syt o::g a0 Ume © time of the earth station can be compared di-

rectly with the position or coincidence pulse de-
Fig. 6. Sun transit time displocement for 1969. livered by the sensor system. A high-precision
oscillator and counter deliver a pulse every mean solar day, which is advanced or retarded elec-

tronically in accordance with the day of the ycaI'T (see Sec. VI11). Alternatively, a "mean solar
clock” can be used if the position of the satellite is measured with a special sun sensorf or a star

tracker. Spin axis misalignment causes a position error, whose worst-case magnitude during a

T For o sotellite lifetime of 5 yeors, clock occurocy of obout 1 port in 109 is necessory.

1 U.S. Potent Applicotion 643493, filed 5 June 1967.
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year is £0.55° of longitude per degree of misalignment for a satellite such as LES-6 (see Ap-
pendix A and Ref. 31).

Automatic acquisition of new stations, i.e., new earth longitudes, is based on the fact that
the time of arrival of the daily pulse from the internal clock determines the stationkeeping longi-
tude. Il satellite position is measured at the 9 a.m. position in orbit (point B3 in Fig. 5), the con-
trol system maintains synchronism with that earth station whose true solar time is 9 a.m. at
the time of arrival of the internal clock pulse. Therefore, new stations are selected automat-
ically by changing the phase of the internal pulse, i.e., by resetting the clock with a command
when the true solar time of the desired station is 9 a.m. Station changes could be completely
automatic if the time of occurrence of the reset pulse were preprogrammed on the satellite.

After acquisition, the satellite can stationkeep at any geocentric longitude, which implies
bidirectional control action, since the disturbing force changes sign in accordance with Ilq. (11-36),
and its motion is constrained to a band around the station, whose width is determined by the
measurement accuracy. A sequential damping procedure, designed to use fuel with high effi-
ciency, ensures the convergence to this band.

The most important performance parameters are fuel consumption (both in steady state and
in damping), the settling time after acquisition, sensitivity to measurement errors, the time

necessary to acquire a new station, and the number of possible station changes.

B. System Analysis (Ref. 32)

In this section we use the "

weak-coupling" approximation that was established in Secs. 1
and 1V. The relevant equations are repeated here, with the definition of constants necessary for
the applications. Variables are sampled once per day, but the star notation is dropped for
simplicity.

The geopotential perturbation is given by (I1-36),

X(, ~_1.54% 10" sin2(x — Ay) deg/dayz , (V-1)

where }\0 ~ 73° east longitude is the position of the minor axis of the geopotential ellipse. The

change in radius is related to the angular drift velocity by (11-19),

= .
6 _ 2 }\((leg/(jax) ) (V-2)
r, 3 360

where 5 synchronous radius = 42,165 km.
The effect of the thrusters is obtained by computing the total change in linear velocity per

day Av( knowing the thrust level, the mass of the satellite, and the time during which the

I
thrusters operate. lYor small Avd, the daily angular acceleration caused by the thrusters is ob-

tained from the laws of orbital motion,

. A 2
}\T == 3 X 3160 —v—( (deg/day”) : (V-3)
0

where Yo = synchronous linear velocity = 3,300m/sec. The total angular acceleration is

therefore

N L (V-4)
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A convenient approximate representation of the effeet of the geopotential is obtained using
a "potential energy funetion” Ve, dependent on the satellite longitude sampled once per day. By
integration,

2

A
Vo) = — S‘ XC dr =—4.4X 10" cos2{n — AL) (dcg/day)2 , (V-5)

o
recalling the necessary transformation from radians to degrees. The thruster is designed to
produce a very small ehange of orbital angular veloeity per day. If the satellite drift per day
remains small, firing the thruster every day for a fixed time results in a constant daily echange
of mean drift rate, i.e., a constant mean drift aceeleration. If, furthermore, the firing time
per orbit is made to depend only on the satellite mean daily longitude, the thruster-imparted ac-
celeration is sensibly conservative, and a second "potential energy function" VT ean deseribe
the longitude eaused by the thruster. The satellite drift motion can therefore be studied in an
approximate but expressive way with the aid of a "total potential energy funetion" in the mean
relative satellite longitude A measured onee per day.

In the system diseussed here, XA is quantized in steps of magnitude Al.. The daily thruster
impulse takes on two different values, 1' between AL and 2A[ or —AlL and —-2A1L, and I'' else-
where for I}\I < [.. The direetion of thrust is sueh as to eanse the satellite to drift toward the

station.t The resulting potential energy function is shown gnalitatively in [Fig. 7.

[ESTSTITI G | -bo-3edein |
POTENTIAL ENERGY =" POTENTIAL ENERGY
| | | |
| TOTAL POTENTIAL - DAMPING BAND | s |
v |

|
| | ENERGY FUNCTION
| ¥

=I'l  -I

DUE TO
GRAVITATIONAL

! FORCES | I
! e —
L 1 L 1 1 1 = 1 - | L
o= e e L 2 o ls 7 xla. =5 -6 -4 -2 o B
ol RELATIVE LONGITUDE J | w w ! RELATIVE LONGITUDE w
= {AL g = oLk S
STATION | STATION *
z =z z i
=] (=] c | [5]
E = =
N e e —L | & 1 —_— 0 &
g TRACKING MODE ' g TRACKING MODE S
g | % & | g
Fig. 7. Quolitotive behovior of the potentiol Fig. 8. Switched domping technique.

energy function.

If, for example, the satellite were initially at llo with no drift velocity, it would oseillate
between l;o and L'O. Damping is thercfore neecessary and is accomplished in "damping bands"
A and A', AL wide about the station, as seen in Fig.8. When the satellite is in A, a daily im-
pulse is applied if the satellite has entered A by erossing the zero (station) line, and no impulse

is applied if it has entered from B. A similar firing strategy is used when the satellite is in A'.

T Notice thot on increose in instontoneous orbitol velocity increoses the semimojor oxis ond the period, thus
octuolly slowing down the sotellite with respect to the stotion.
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Consider,
RINEEI i g

as ‘ar_lquampye, thg{,behavior of awsatellite,star\ting at Pﬁ
H R e IO R IG el RN THEO) Ay g

, RSt YPlesien ae;
suming for simplicity that Ve = 0. The s?‘,tﬂl,]zi,t._e; ‘Y({u.ld .Pﬁ.?i‘%ﬁ?_ll,erva.l,‘_?f.]‘ ‘byihu]E ‘t,hyu”stcy:s_“z'ip(_ll I“OE.l(?h
the, station. with kinetic, energy,(in the yariable, AL saual 50 Voo N0, IPHES YRk be appliad in
A', but upon entering A, & dpmeing impulse would be called far pnce per. day.. 5o, that. in,band A
the kinetic energy of the satellite would (‘iscr;gasc by AV '(‘l‘“ig..,fi)_'.m"l)"hu_s')tvhc:Is/a}g,(;'lll;iﬁ_e would only
reach PZ instead of P'Z, invert its motion, and er_lte; A from B. No impulse would therefore be
applied until the satellite crossed from: A to Al "'\ln’each}cdfnplcte oscillation/ the energy de-
creases by 2AV until the satellite remains in bands A or A'. As seen in the following, the
damping impulse is changed adaptively to reduce the residual relative kinetic ‘energy to very
small values. I'and 1'' are made large enough so that there is a'potential energy minimum in

a neighborhood of the station for any station longitude and a stable equilibrium point o¢curs within

+ Al from the station. LR

1. Station Acquisition Mode

The automatic system enters the station acquisition mode when its longitude differs from
the station's by more than L, degrees. I. is made sufficiently large so that this event only oc-
curs as a consequcnce of a station change. Redundancy techniques are used to avoid spurious
transitions into the acquisition mode. The thruster immediately fires for a fixed length of time
at opposite points of the orbit, causing the satellite to drift toward thc station. When the de-
sired geocentric longitude is reached, the satellite returns to near synchronous orbit by firing
the thruster in the same manner in the oppositc direction. Having completed thc homing firing
sequence, the system switches to the station-tracking modec. As a result of orbit perturbations
during the transfer between stations, in general at the beginning of tracking mode operation the
satellite has a rcsidual drift velocity relative to the new station, which must be damped.

1f }.\o is thc drift rate impressed on the A =z |3-bo_-3’10’06)
satellite at the beginning of the acquisition
mode, then within the limits of approximation

of (V-1) the energy conservation theorems in INITIAL

KINETIC ENERGY

the variables A and A can be writtcn as for a (BEST CASE)
point mass whose motion were described by %
o
this equation. I'rom (V-5) and I'ig. 9, for o KINETIC
; ) ) 5, i ENERGY
acquisition of any station it must be }}\0 e
V.. =88x10% (deg/day)’, or A_ 0.42 L
ETi : o KINETIC ENERGY
deg/day. Then let A, = 0.42 k deg/day, where (WORST CASE)
AV,
k > 1 is a coefficient which determinesthe ac- ‘J EXTERNA L £.max
quisition speed. If the relative drift velocity L/ IPOTENTlAIL ENERGYl P
imparted by thc thrusters is i deg/day per 0 a5 90 135 180 o
sec of thruster operation, the thruster on- T RELATIVE. LONSITUGE (degh
time for acquisition is T, = 0.42 k/i sec. The sdiser seni
drift velocity must vary by the same amount axis EXIS!

twice because there must be two equal and op- ORIEARIHORE OVATOR

posite impulses. 1f the fuel consumption is Fig. 9. Kinetic energy for the transfer between orbits.

r'nf gm/sec, the fuel required per station acquisition is me = 0.84 1'111. k/i. Notice that the in-
A

equality X(?/Z 2 AV need be satisficed only for transfers betwecen the minor and the major

G max
axis of the earth's equator. One could compute on board the minimum value of the acquisition



impulse as a funetion of the required longitude displacement, using (V-5), and fire the thruster
accordingly, if the additional complexity were justified.

The speed of station aequisition ean be derived by integrating (V-1) with initial eondition
A= 7\0 for various longitudes of the old and the new station. To obtain results in elosed form,
(V-5) can be approximated, dropping the phase term Oo, by
16

o

V.A\)~—4.4%x10"2 (1 .
G >

7\2) (deg/day)® (V-6)
for —1/4 < A < 7/4, where A must be expressed in radians. This second-order approximation
to cos2A is in error by 5 percent at A = 7/8. The worst ease for a 90° transfer is clearly that
in which the old station is on the minor axis of the earth's equatorial ellipse and the new station

is on the major axis (Fig.9). The initial kinetic energy becomes

2

V, = 8.8X 10 k% (deg/day)® . (V-7)

Defining ¢ = 2k2 = 16(7\2/172 ), the kinetie energy during the first half of the trajeetory is, refer-
ring to Fig.9,

v (0) = 4.4%x10° % (V-8)
and therefore expressing the veloeity in rad/day,

. 1

A = (0.2977/180) £2 (V-9)
The time to travel an angle of 45° is then

n/4
180 g‘ =L )

Y © 0.297x g2dr (V-10)

which integrates to
- T S |

ty =152 sin (2 ¢k ") days . (V-11)
Similarly, in the seeond half of the trajeetory,

v o= aasag? [k — 2« 50 @ —Z2) (V-12)

(& 172 2
and defining
L 5 1 2 I

¢ =22 (k" —1)2/[2k" - 1) — 1] (V-13)

t2 - 152 log ¢ days , (V-14)
and the worst-case time for a 90° transfer is

tw(90 ) = tyott, days . (V-15)

The worst-ease acquisition time for transfers smaller than 90° oeeurs when the new and the old
station are loeated symmetrieally with respeet to the 45° longitude (Fig.9) and can be ealeulated
easily with the previous procedure. The aequisition time for 180° transfer between any two posi-
tions is elearly twice tw (90°). The best-ease 90° transfer oceurs when the old station is on the

ma jor axis and the new station is on the minor axis.
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2. Fuel Consumption in Steady State

The optimum steady-state condition, from the point of view of fuel consumption, would be
one in which a constant acceleration were applied to the satellite to equal the tangential drift
acceleration at the satellite geocentrie longitude. This ideal situation cannot be achieved because
perfect damping is not possible in practical controllers. As will be seen later, the damping im-
pulse is reduced adaptively to a small value In during the damping maneuver. After the controller
has reached the last value of ln’ either the impulse in A and A' of Fig. 8 is reduced to zero (first

system), or the impulse remains at the value In but the switehing is discontinued (second system).

a. First System

No impulse is applied in the damping band after damping has been eompleted. The potential
configuration in this ease is shown in Fig.10. The longitude interval 4AlL is sufficiently small
so that the external acceleration given by (V-1) can be considered constant. lmpulses +1' and - I'

are applied in opposite directions on the sides of the damping band. For a daily impulse 1 the

v

POTENTIAL ENERGY

| DAMPING |

BAND —_.1

GRAVITATIONAL | ACCELERATION

‘

=]

Fig. 10. Potential energy for the first system,
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A
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I |

energy aequired by the satellite in traveling AX degrees is V = 1AA (deg/day)z. L.et l“o be the
maximum value of fe and define a s ln/l“p, and o' = I'/Fe. Since the satellite must remain
within *ATl, of the origin after damping, «' must be greater than one. At the end of the damping,

the satellite has at most residual energy

\% :(In+fe)AL : (V-16)

R

This worst-case situation occurs if the satellite reaches point B in Fig. 10 with zero velocity.

If this does not oecur, the satellite exits from the damping band and the damping eycle continues.
In general, the satellite veloeity will be zero at some point internal to the damping band, in
whiech ease the residual energy is smaller than VR' The damping cycle ends at the origin, since
the satellite longitude is measured in steps of width Al.. The relative kinetie energy is zero at

}’2, where the potential energy is, with the reference of I'ig. 10,
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VC(PZ) = Vl +fc AL = (1n+ Zfe)AL.' bz TERRT 117 £l (V-17)

3

e poltgrsanos apd e wraie do dniog eds. ron ST PAR o4
From simple geometrie eonsiderations, the'position P, is defined by
U RIN Bl uia M AR S T A T it aliflalne it 0 R i e i 1 e T A

% mdl frlzlfe)v:A_L/(I';_;‘.fe)v o ol St S - (V-18)

EIerﬁelntary cons’iderzlitlons on the equation of motion for a eonstant acceleration field yield that
s
1 3 :
(2x')2 oo fi e - ] £
ty =234 AT s B RIR G/ 1T ) o, (V-19)

wherec }‘A is the drift velocity with which the satellite passes at A (Iig. 10),

2 1
AA = [Z(In + Zfe) ALJ? . (V-20)

The travel time between A and B is

tag = Ay —AgltI, . (V-21)
wherc
1 1
= J)e L
A (ZInAI ) : (V-22)
The velocity at P3 is zero, and therefore
3 [ -
tyy = AB/(I fe) g (V-23)
Sinee this eycle repeats itself, thc fuel eonsumption per second is proportional to
@ oy 2 A B, B GIEL
A BY YA AB B ’

By using (V-17), (V-18), (V-22), (V-24), and letting A — 7\0 = 6 in (V-1), the expression for the

steady- state fuel consumption when stationkeeping at any position in orbit is obtained:

L, + ¢
o't - a'F 1 2 — (V-25)
(01n +t 2|sin2é6 ()2 — aé
(Sl 3
1 2 |sin26|
1 1
where £, = (a +2 [sin26[)2 /(o' — | sin2é]) and £, = @2 /(@' + [sin26]). By taking the limit

for sin26 — 0, thec steady-state fuel consumption for fe = 0 is found:

QM =2r o /1 v 20 fa) . (V-26)

b. Second System

The last damping impulse Irl is retained in the part of the damping band wherc it was last
applied. The potential eonfiguration for this system is shown in IYig. 11. The residual encrgy is
again given by (V-16). The same procedure used before yields the steady-state fuel consumption

for this system:

0'51 > Cln/§3

: (V-27)

1
=1 (an+2 |sin26])2 — ¢

3
byt ey F

[sin26 |
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where £ = ((yn + |sin26 )2, and the limit for sin26 = 0 is
Q(2)=2a ¥ /1.5 +a fa') . (V-28)
o AREd n

c. Comparison of the Two Systems

(1)

Comparing Egs. (V-26) and (V-28) yields Q(Z) < Q for o, < % «'. It has been seen that

«' must exceed unity to ensure the existenee of a potential minimum in a neighborhood of the
station. Also, o, must be less than unity to make the residual encrgy VR small. In general,
this incquality is satisfied and thc second system is preferable when f = 0. For instance, for

a'=2and a_ =1}, Q“) 041‘ andQ(2 -0308F. The second s stcmis superior when
n_ 4 iy p

o)
the external force is zero or sufflclcntly small. As o, 0, Q (2)/Q (1) . 3. When the external

o o
force is maximum, i.e., |sm26| =1, then Q(1 =R AT 1~e and Q(2 =1.16 Fe. Therefore, the
seeond system eonsumes lcss fucl also when the forec is maximum. Notice that when o, 0,

Q“)and Q(Z)

pcr orbit applied by the motor equals the acceleration per orbit duc to the external foree. 1t is

tend to fe’ i. e., the systems tend to a minimum fucl system in which the impulsc

therefore possible to conelude that:

(1) The second system is superior.

(2) The impulse I' = @' Fe should be the smallest eompatible with the
requirement of being sufficiently greater than Fg to give some safety
margin. A good value is approximately a' = 2, the final sclcction
being made on the basis of convenience in the electronic implementation.

(3) The impulse 1, in the last step of the damping cycle should be as small
as possible.

3. Aetive Damping

After the satellite has aequired a station, its kinetic energy is deereased by an active
damping system. A first requirement is to have a high potential wall (}Fig. 7) which makes it
impossible for the satellitc to return to the station aequisition mode. This detcrmines the width

L. of the traeking band and the impulse level between + AL and — L., sinee it must be, from (V-5},
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VL > 0.088 (deg/day)z, where VL is the potential energy at a longitude =L from the station.
Letting h be the number of longitude subdivisions of width AL in which the applied impulse has

the value I'', and defining o'’ similarly to «',
Vi, =(a'+a'h) F AL »0.088 (deg/day)® . (V-29)

Since AL is chosen on the basis of measurement errors and of system requircments, and o' was
obtained previously, Eq.(V-29) determines the product «'' h.

To obtain a small residual value of the drift velocity at the end of the damping process, it
is necessary either to measure the satellite drift velocity accurately or to reduce the damping
impulsc adaptively. In the first case, the residual drift velocity is determined by the measure-
ment aecuracy; in the seccond, by the smallest value of damping force which can be uscd in
practiee.T The latter approach, which leads to a sequential design of the controllcr, was taken
because of the difficulty of measuring drift vclocities.

Two damping systems will be compared, in which successive values of the damping impulse
obey a relationship of the type

i o m ek

I 5 ; a>1 . (V-30)

and the sign is chosen so as to oppose the drift velocity. The two systems differ in the manncr

in which the transition from 1, to 1 occurs:

k k+1
(a) Zero Crossing Adaptation: The transition from 1y to 1,4 occurs at eaeh
zero crossing, i.e., each time the measured position of the satellite

passes from region A to A'in Fig.8, or vice versa.

(b) Convergencc Adaptation: The transition from 1 to 1,4 occurs eaeh time
the satellite converges to the band £ AL around the station. In general,
several zero crossings can occur before convergence.
In studying both systems, the initial kinetic energy will bc taken to equal VL from (V-29) for

a' =2, a'"=6, and h = 6. Thc following analysis is therefore a worst-ease study of convergcnee
time. Two definitions are useful in the study of the active damping system. Thc convergence
time is the time after which the total energy (in the A variable) V;, remains bclow a small value
Vi
efficicncy is the ratio of the initial kinetic energy (in thc A variable) of the satellite to the energy

whieh is the residual energy toward which the systcm is designed to converge. The damping

(in the A variable) expended by the thruster in gctting the total energy bclow VR'

Zcro Crossing Adaptation:— In this system, the damping impulse is divided by a

faetor a > 1 every time the satellite passes through zero. After k half oseillations of the sys-
tem, the total energy is
k-1
- _ . DS
Vi = Vo 8L/, a . k>21 (V-31)
i=0

where aoFe is the initial damping impulse. The sequence is ended when

e
v, <aa"F AL (V-32)

t Energy is coupled into the system by errors in determining the boundories of longitude bonds, os discussed in
the following.
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or
V. —a BAL ), arza M AL . (V-33)
o e = o e

Using (V-29) and executing thc summation in (V-33), rearranging and letting a l= €, the eondi-

tion for eonvergenee is

ao>38(a—1)/(a—e) . (V-34)

When this condition is not satisfied, the rate of decrease of thc damping impulsc is too great in
rclation to that at whieh cnergy is subtraeted from the system, and eonvergence does not occur.
If @, ean be inereased suffieiently, inequality (V-34) can always be satisfied. However, the
initial damping force @ eannot bec arbitrarily large. The operation of the adaptive damping sys-
tem will eventually be limited by the aceuracy of the longitude measurement, since a longitude
crror 6L in establishing the boundary of the damping band eauses a variation of the potential

encrgy of the system

oV = (yobeéL : (V-35)
Requiring that 6V be smaller than some percentage n of VL' an upper bound for o, is determined,
e.g., for 6L, = 0.25° and n = 2%, o, < 6. Using this condition in (V-34), a £ 1.19 — 6e/32. Ob-

viously, opcrating with these low values of a is not very effieient. Thc encrgy expended by the

active damper on the satcllitc is

n
W=2V +2V +...+2V =2V +2 ), V (V-36)

or, from (V-31),

a(n +1)
o a-—1

N _ CINITY RO (o b () .
w 2(n+1)VL 2a FeALJrZozo(a_i) (1—a )1CAL . (V-37)
For example, if € = 1/32, which is a reasonable value to have a suffieiently small In’ n e 49.
With the values n = 19, @ = 6, Vr = 38 FCAL, and a = 1.18, thc damping cfficicney, from (V-37),

is My = 0.085.

Convergence Adaptation:— In this typc of damping controller, oy is retained until

the satellite is trapped in the damping band = AL widc around the origin. In the rest of this see-

tion, the most efficient damping sequence is determincd for dampers of the second typc. Con-
sider a damping sequence in which \/’n = Vo a_n, a >1. The first eonvergenee is obtained after

NO half-eyeles of satellitc position. From the previous definitions and for V. = 38 I<‘eAl,, the

L
energy expended during this first phasc is

L. 7 (v -V !r . 7 . 7 . 1 _ 7
W Z\L 1.2 \/I, \0) 2 \L 2\/0) + +2 [\/L (1\0 1) \/o]

2N V., =N (N —-1)V 5 (V-38)
o L. o o o)

After the first convergence, the number N of half-eyeles of satellite position necessary to obtain
each sueeessive partial convergenee obviously is the smallest integer > (a— 1). The energy W"'

expcnded is then, for a 22,
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Fig. 12. Simplified block diogrom of the Automotic
Orbit Control system for LES-6.
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The lowest value of W'' is obtained for a = 2. Sinee the energy W' is independent of a, the
optimum is obtained when a = 2. Using (V-38), (V-39), and recalling that VL = 38 FeAL, V0 =
aoFeAL, and NO = 38/a0,

Na

oa—T Ll

y 38°

Niy= 38/ |=— +38+2(1—¢€)a
D o,

whieh yields Ny = 0.13 for @ = 6, a=2, €= 1/32, and N = 1. Notice from (V-39) that, if 10
could be made larger, so that Vo = VL’ the damping efficiency in the optimum configuration
would be

s ot o P
"D max -~ 2(1 — €) Na Das =Rty

This efficiency is also obtained whenever the initial energy is small, so that the system always
converges in one cycle. The values of the suecessive damping impulses are then Ik =27 IO.
Sinee o is selected on the basis of the maximum potential variation caused by measurement
errors, the only parameter to be determined is the value €, i.e., the final value 1n' which should
be retained after convergence to ensure minimum steady-state fuel consumption and should be

as small as is compatible with practical requirements.

VI. REALIZATION, SIMULATION, AND TESTING OF FLIGHT SYSTEM
A. Logic Design of Controller

The over-all bloek diagram of the stationkeeping system is shown in I'ig. 12. The solar
cloek determines the position of the station whieh is seleeted by command from ground. Sun
and earth sensors and the associated coincidence eircuitry determine the satellite position. The
longitude difference in sign and absolute value is stored in a memory. Measurements are made
twice per orbit at satellite anomalies 180° apart and averaged. The controller remembers the
sequence of longitude difference measurements and determines the required thrust level in ae-
eordanee with the laws established in See. V. The thruster firing logie turns the thruster on so
that the resulting thrust vector is always tangential to the orbit and has an appropriate direction.
A command from ground can turn the thruster on at any time for the initial orbit adjustments
(See. 1lI-E). Commands ean also be sent to the cloek to initiate it to the appropriate day of the

vear(see Appendix A). The system weight is about 4 pounds and the power consumption is 120 mW.

1. Longitude Difference Measurement

The bloek diagram of the longitude difference measurement logic is shown in I'ig. 13. 'The
inputs are the station and the satellite position signals I.«]1 and EZ and P1 and PZ' respectively.
i8] 22
PR

Ei' These sequences can oceur at the beginning of the stationkeeping experiment and whenever

a station is changed. The system will wait until P1 or b11 followed by E1 or P1 is received be-

The purpose of the state memory is to discriminate against wrong sequenees such as 1’1, t

fore enabling the longitude counter.
The state memory also determines the sign of the longitude difference measurement by adding

algebraieally the differenee measurements P1 and PZ’ as results from the flow diagram of Fig. 14.
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In the Early and Late states the counter counts up. In the Contrary 1 state the counter counts
down until it crosses zero, then reverses direction and complements the sign register. The
counter has an overflow register which determines when the satellite is out of the traeking band.
The longitude difference measurement is transferred in fixed increments to a secondary
memory upon receipt of a transfer pulse which is generated after the second measurement and
the thrusting have been completed. The secondary memory contains the information "the satel-
lite is {or is not) in band A, B, C, or in the acquisition band." Signal redundancy techniques are

used to avoid a single spurious pulse bringing the eontroller into the Acquisition Mode.

2. Control Unit

The block diagram of the control unit is shown in Fig. 15. Upon arrival of an Aequisition
signal, a pulse train is fed to the firing timer, which opens after the thrust logic has sent an
Open signal. The input P2 is used to count days, since this thrust must be applied for two con-
secutive days. The opposite thrust is applied when the satellite arrives at the damping band.
For redundaney and to avoid false signals, the logic waits for two B signals, or a transition
from Early to Late, or viee versa. When either situation oceurs, the opposite thrust is applied
for two days; when the thrusting operation is eompleted, the satellite returns to the station
tracking mode.

In the tracking mode, the operation of the controller is determined by the sequenees of the
inputs A, B, C, together with their "sign" E, L. The "memory-state diagram" for the control-
ler in the tracking mode is shown in Fig. 16. The thrust output is determined by the memory
state and by the current value of the quantized longitude; thus several "output states" are eon-
densed in one "memory state" for simplicity of presentation; the complete output state diagram
consists of 61 states. From the aequisition mode the controller goes to the state (Damp — ) if
it is early and to (Damp +) if it is late. In these states no damping force is applied whenever the

satellite is in bands +A and — A, respeetively. Whenever there is a partial eonvergenee, the
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Fig. 15. Block diogrom of the controller. Fig. 16. Memory-stote diogram of the controller.
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sequenee — A, +A, — A oecurs if the eontroller is in (Damp —) and the sequenee +A,—A, +A if it is
in (Damp +). On the transition from the states Converge to the states Wait, the damping foree
is deereased unless it has already reaehed its minimum value. The eontroller exits from the
states Converge upon reeeipt of a B signal, and the damping force returns to its maximum value
upon reeeipt of the signal Begin, whieh happens after two sueeessive C signals.

The adaptation memory input is the Deerease signal (Fig.15). The damping foree is obtained
by ehoosing a frequeney in the frequency seleetion matrix, whieh is sent to the fixed length firing
timer. When the satellite is in bands #B or #C, the foree level is established in a similar man-
ner. An Inhibit signal prevents the operation of the traeking-eontrol mode when the satellite is
in Aequisition.

When both the firing sequenee and the longitude differenee measurement have been eompleted,
a Reset und a Transfer pulse are generated and fed to the auxiliary longitude difference memory

in Fig. 13.

3. Thrust Logic

EARTH
- . : CENTER
The thrust logie block diagram is shown —_— ,f":g; -1 FIRING [—® START THRUST
: : ; »| ANGLE | o
in Fig.17. The earth eenter detector delivers S ORTREY ERERERRREN:

FROM SUN CLOCK b
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is plaecd 81° away from the marker point.

After the arrival of the earth eenter pulse, if > g0
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and remains on until the firing angle eounter

overflows. The sun clock used to measure the LATE

firing angle delivers 512 pulses per satellite

\
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~

d
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«

|

b

spin. If the satellite is late, the thrust must STOP ACOUISITION (early)

opposc the satellite velocity veetor. A delay
of 180° of satellite rotationis therefore intro- Fig. 17. Thrust lagic black diagram.
duccd before the thruster is turned on.

The logie for the Plasma Thrusters differs from this, in that there are four thrusters lo-
cated 90° away from eaeh other.33 The sun eloek is used to gate the appropriate thruster, and

the 180° delay selects the direction of firing.

4. Eleetronie Solar Clock

In order to compare the satellite and station positions in orbit, it is necessary to have a solar
eloek, as diseussed in See. Il

The differcnce betwcen the mean and true solar transit times is shown for thc year 1969 by
the smooth eurve in Fig.18. It may be assumed that this eurve is valid for subsequent ycars,
sinee the seeular variation of the differenee is small during the satellite lifetime. The clock is
a sequential network whieh delays the output of a eounter by a timc D (Fig.18) as shown in the
bloek diagram of Fig. 19. Two pulses per mean day, 12 hours apart, start a delay eounter whieh
counts minutes until its eontents equal the contents of the accumulator. At this time, the output

pulses S1 or S2 are generated and the delay eounter is reset and opened until the next pulse from
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Fig. 18. Approximation to the sun transit time. Fig. 19. Block diagram of the electronic solar clock.

the main counter arrives. The accumulator contains the amount of delay measured from the
reference line in Fig. 18. As shown, the reference line differs from the mean solar day line by
17 minutes. This is taken into account by sending the alarm command at an appropriate time.
The value stored in the accumulator, which is an up-down counter, is computed by the sequential
network shown in Fig. 19. The staircase curve in Fig. 18 shows the actual correction obtained
with this logic. The approximation has been selected by a trial-and-error procedure, with a
view to simplifying the logic design. Since the information contained in the solar clock logic
must be preserved when the satellite is in shadow, and the main counter must continue to oper-
ate throughout the shadow period, the system is powered from the solar bus or a battery.

The most important function performed by command from ground is the selection of the sta-
tion. This is done by resetting the main counter at 9 a.m. local mean solar time of the station
to be tracked, since the satellite position is measured at 9 a.m. satellite truc solar time. Since
the daily correction is obtained as a delay from a reference line 17 minutes earlier than the
mean solar day, the time at which the main counter must be reset is 8:43 a.m. station mean
solar time. The longitude of the station, the longitude of the command site, and the propagation
delays are known and therefore determine the site mean solar time at which the command, which
is called ALARM, must be sent. An error in the time at which the ALLARM is sent only causes
an offset error in the operation of the control system. The magnitude of this offset is obviously
1° of longitude per 4 minutes of time error, so that very reasonable accuracies can be achieved.
The command system of the solar clock also performs the auxiliary function of choosing the initial
conditions for the sequential network and for the accumulator. This is necessary because the
actual date of launch is not exactly known beforehand and is also uscful as an additional element

of flexibility in the system.

B. Computer Simulation and Flight System Testing

An extensive computer simulation study was carried out during the pro;zram,34 to yield es-
timates (1) of the fuel consumption when operating with the cold gas thrusters in the presence of
random measurement errors, and (2) of the dynamic behavior. 1n the course of this work, it
was found that it was advantageous to increasc the width of thc B longitude band from 2° to 4°,
since this resulted in lower fuel consumption in the presence of random errors. This modifica-
tion was therefore incorporated in the hardware design.

The Stationkeeping Simulation program performs the following operations for cach orbit:

(1) Integration of the equation of motion with earth tesseral harmonics through
third order,
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(2) Generation of the ecoincidence pulses at the appropriate sun ephemeris
time,

{3) Determination of the satellite position, using the reconstruction of the
sun ephemeris implemented by the on-board logic, or by the special
sensor,

(4) Adding random error (uniformly distributed, uncorrelated, +0.5°) to
the measurcment,

(5) Dctermination of the thrust level required for the next orbit, using a
subroutine whieh duplicates the behavior of the finite-state eontroller.

The outputs are the osculating orbital elements for eaeh orbit and the fuel consumption. It
is possible to simulate opcration with both the Plasma and Cold Gas Thrusters. This simulation
program can take as inputs thc orbital clements determined by radar tracking.

A variable step-sizc llamming's integration routine was used. It is important to use a var-
iable step-size method because of the discontinuous nature of the forces involved. Mueh work
was done to study the effect of integration errors.t This is most important, since the number of
succcssive integrations is quite large when the simulation is earried on for the equivalent of five
years of orbital life. 1n order to handle discontinuous thrust properly, one would like to use a
small step size; this, howcver, inereases the number of necessary integration steps. An ap-
propriate eompromise was found and its validity checked by comparing the results given by
Hamming's and Runge-Kutta variable step-size routines.

An extensive analysis of fuel eonsumption was made for different values of the stationkceping
longitude. Uniformly distributed uneorrelated noise was used, since it seemed a sufficiently

severe test for the system.
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Fig. 20. Simulatian results at the worst longitude. Fig. 2). Simulation results at the unstable point.

The design constraint of not being able to measure the angular drift except in very largely
quantized longitude bands mades the systcm rather sensitive to fast, uneorrelated noise. The
reason for this is that thc eontroller can go very rapidly through the damping eycle, as a conse-
quence of spurious sequenees of signals like +A,— A, tA or— A, +A,— A. As is seen in Scc. V, the
controller responds to this sequence by switching to a lower level damping foree. Figures 20
and 21 show typical eomputer runs for stationkceping at the worst longitude (~295° East) and at
the unstable point {(~259° East) with the Cold Gas Thrusters, with random crror. In most cases,
the longitudinal exeursion is within #3 degrees of the station.

Several runs were made to estimate the fuel consumption in the presencc of random errors.

As is to be expected, the fuel consumption is a function of the stationkeeping longitude. Typically,

t E. H.Swensan, unpublished report.
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the system will use 2.6 kg when stationkeeping for five years near a point of maximum tangential
force, and 0.6 kg near the unstable point.

Testing of the system was carried out by exciting the earth and sun sensors using a special-
purpose Simulator. This device simulated sequences of sun and earth pulses at the spin rate of
the satellite. Circular orbital motion was simulated by ehanging the sun-earth phase uniformly
in time. The Simulator had provisions to change the orbital speed and to "jump" to any point in
orbit using pushbuttons. The stationkeeping system clock could be sped up, so that the Day
Pulses would occur with variable repetition rates, down to as little as 1 minute. 1n this manner,
by measuring the time elapsing between the Day Pulses Ei' ‘2, which were available externally
via telemetry, the "satellite position" on the simulator could be changed so that the sensor co-
incidences Pi' PZ would occur at the appropriate times with respect to the clock. By changing
the time between E1 and P, (EZ' PZ) for a given clock speed, the system measures different lon-
gitudes. This type of checkout was conducted also during thermal-vacuum tests.

A seecond technique, which was most useful in testing the integration of the sensors and logic
systems, was employed in which the satellite was actually spinning. The light from a lamp sun
simulator (appropriately folded by mirrors) was used to excite the sun sensors. Thec carth image
was projected on screens in sueh a manner as to obtain approximately the right earth albedo.
The earth image could be moved (discontinuously) so that sensor eoincidcnces could be obtained

at the right time with respeet to the elock pulses also in this ease.

VII. EARLY FLIGHT RESULTS AND COINCIDENCE ANALYSIS

The longitude history of the satellite from 26 September 1968 until 25 June 1969 is shown
in Fig.22. The Automatic Stationkeeping System operated from 22 December 1968 to the end of
the period. Telemetry was recorded daily from the Automatic System longitude sensors. The

ephemeris transit time has been subtracted from the sensor data.
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Orbit determinations were made (independently of the sensor data) onee a month, and more
frequently for ealibration purposes at thc beginning of the experiment. These are indieated by
the open circles in Fig. 22.

During the period from launeh to 22 December 1968, the system operated mostly in the
"Ground Command" mode. During this time the following operations were performed: (a) initial
trimming of the orbit, using the Cold Gas Thrusters, (b) experimentation with the Plasma Thrust-
ers, to determine their thrust level, and (c) experimentation with the Automatie System, elosing

thc loop for brief periods of time and monitoring its behavior eontinuously.
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All operations were performed suceessfully. The initial orbit (semimajor axis 42,068 km;
eeeentrieity 0.00226; drift rate +1.21°/day) was trimmed to a nearly synehronous orbit (semi-
major axis 42,159 km; eeeentrieity < 0.0001; drift rate 0.051°/day). The thrust obtained from
the Gas Thrusters was found to be within 10 pereent of the ground measurements.

The Plasma Thrusters have established a reeord of operation in orbit for eleetrie propulsion
systems. The measurement of their performanee required long periods of operation, and thus
This is beeause the effeet of the Plasma

The thrust

elimination of the natural perturbations from the motion.
Thrusters is quite eomparable in magnitude to that of the geopotential perturbation.
value obtained was very elose to the value measured on the ground.

The quiet period from 12 November to 22 Deeember was neeessary to eheek our orbit deter-
mination teehniques by predieting motion under the effeet of the natural perturbations only. Our
30-foot antenna and reeeiver installation ean measure satellite range (via time delay measure-
ments through the satellite repeater) very aeeurately, besides measuring azimuth and elevation.
We now believe that our orbit determination aeeuraey is of the order of 0.3km in semimajor axis

(typical 30 value).
At

At this longitude the geopotential

The Automatie System was turned on for a long-term experiment on 23 Deeember 1968.
this time the satellite had a drift rate of 0.062 deg/day west.
perturbation tends to move the satellite west. The Alarm Command was sent to locate the station
at about 80° West, so that a C-band measurement would be made by the on-board system. This
resulted in slowing down the satellite, as seen from Fig.22 and recorded by the orbit determina-
If the Automatie System had

On 18 February the

tions of 17 January and 20 February (drift rate of 0.026 deg/day).
not operated, the drift rate at this time would have been about 0.5 deg/day.

station was moved to 92.5° West longitude.

The data obtained from the sensors were 5
analyzed totest several hypotheses about their | 1/8 DEGREE o

Y 5

distribution. Ivigure 23 shows the actual un-
smoothed data for the period 8 January to 5
March 1969.

Totest the validity of the "weak-eoupling"

92.5

approximation to the drift motion, we made

least-square fits of polynomials of time to the
summarized in Table 11,

data. The results,

LONGITUDE (deg)

show that the unbiased estimate of the variance
of the residuals is eitherincreased or not sig-

nificantly decreased in going from a second

degree to a third degree fit. Thus the weak
eoupling approximation, whieh predicts a near

parabolic behavior for small longitude excur-
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sions[see Eq. (11-35)}, is supported. The see-
Fig. 23. Position meosured by the on-board equipment

ond degree least square fit is seen in I'ig. 23 in a typicol period of operotion.

{continuous curve).

Next we studied the residuals. having eliminated the trend via the parabolie least-square fit.

Stationarity:— The variance of the residuals is different in the different periods, as
shown in Table I1. Furthermore, one can see periods in which the data scatter is greater, even

though the daily thrust has not changed compared to a relatively quiet period (typically, the
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TABLE I
VARIANCE OF RESIDUALS

Linear | Parabolic | 3rd Degree | 4th Degree
Fit Fit Polynomial Polynomial
Period (sec) (sec) (sec) (sec)
First (22 Oct.-12 Nov.) 15,15 11,42 10.93 1459
Second (12 Nov, -15 Dec.) 32,32 28.87 29.16 31.67
Third (23 Dec.-7 Jon.) 61,98 62.03 63.05 64,40
Fourth (8 Jan.-13 Feb.) 39.63 33.04 32.26 32.16

third and fourth periods). The difference in variance strongly supports the hypothesis that the

residuals are not weakly stationary (and thus not stationary) in time.

Whiteness:— We applied Anderson's modified test for whiteness, which is applicable
if the residuals are uncorrelated. This is done by computing the autoeorrelation for unity lag
for the sample from the time series. The results for the autoeorrelation function are shown in
Figs. 24 through 27. We also applied the Durban Watson test for whiteness to the different periods.
To gain some intuitive "feel" for the behavior of the autocorrelation function for truncated time

series obtained from a "white" process, we repeated the analysis for samples obtained from

04
8 JAN 1969 TO 13 FEB {969

04 0.2
23 DEC 1968 ’

TO 7 JAN 1969

o
p—O
e
AUTOCORRELATION
le)
g
O
— o
¢

Z

=)

b 5

-

w

@

@

o

o

e -oet

2

< 02 | |':
= -
= =

-04} E }cl,
T w
w 1
| $ il l‘fj
e !
-0.6 1 1 1 1 1 1 1 -04 1 1 1 1 1
0 2 4 3 8 ) 4 8 12
LAG (days) LAG (doys)
Fig. 26. Autocorrelotion of the sensor errors Fig. 27. Autocorrelation of the sensor errors
(third period). (fourth period).

43



0.6

WHITE GAUSSIAN gl

NOISE

Fig. 28. Autocorrelation function
. ? for white Goussian noise.

AUTOCORRELATION

-04 1 1 Il 1 1 1
o} 4 8 12

LAG (days)

white Gaussian noise and uncorrelated equiprobable noise. A typieal result is shown in Fig. 28.
We conelude that our analysis of the data available so far supports the hypothesis that the resid-

uals are a white random proecess.

Ilystograms:— To obtain some information on the underlying probability function, we
prepared hystograms of the residuals. The hystograms are often bimodal; only in periods 111
and 1V do the hystograms show a behavior reminiscent of the Gaussian eurve. Inorder to inter-
pret the meaning of the residuals, it is important to note that the telemetry sampling rate is
about 20 seeonds. Thus there is an intrinsie uneertainty of about 0.1 degree in the measurement.
The information on the distribution will be improved as the available measurement sample in-

creases in time.

VIII. CONCLUSIONS

The Automatie Orbit Control system of 1LI:S-6 had operated successfully for several months
at the time of this writing. The main eonclusions to be drawn from this experienee are, in our

opinion:

(1) It is possible to automatically control synchronous orbits with modest
equipment complexity. This leads to simplification ol ground operations

and reduetion in operating costs of networks of synehronous satellites.

(2) The accuraey of eontrol, whieh in the present experiments appears to be

of a few degrees, should improve in future systems.

(3) I"rom a eontrol-theoretie point of view, it is important to notiee the
advantages of symmetrie measurements and thrusting, which ensure
the stability of the coordinates whieh are not controllable when the sat-

ellite longitude is sampled once per day.

The data presented here deseribe the first few months of operation of the [LES-6 automatie
system, using the Plasma Thrusters. Iixperiments of station transfer and of prolonged opera-

tion with the Gas Thrusters will be earried out in the near future.
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In the author's opinion, methods of Automatie Orbit Control will be used extensively on

tomorrow's synehronous satellites.

This judgment is based on the faet that the number of sat-

ellites in synchronous orbit will almost eertainly inerease greatly. Stationkeeping requirements

will then be dietated by the need to avoid interference between synchronous satellites.

for Automatie Orbit Control is not limited to the synehronous orbit.

The need

Both cireular nonsynchro-

nous and general elliptie earth orbits are perturbed by the geopotential harmonies, the sun and

the moon.

eontrol of synehronous orbits should be possible on the next generation of satellites.

these ideas extended and applied to more eomplex problems of orbit eontrol.
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APPENDIX A
THE SOLAR TIME ON AN ARBITRARILY ORIENTED SATELLITE

If it is assumed that the earth's and satellite's spin axes are parallel, the transit of the sun
on corresponding meridian planes of the two bodies occurs at times inversely proportional to
their spin rates. This is no longer so if the spin axes are not parallel. The variation of merid-
ian transit time has two major causes: the inclination of the plane of the elliptic to the equatorial
body of the earth or satellite, and the ellipticity of the earth's orbit, with which the satellite's
orbit around the sun can be assumed to eoincide in our approximation.

In the following, formmulas are given for
the difference between mean solar time and g RN

true solar time measured on a satellite arbi-

"

ECLIPTIC

trarilyv oriented in an orbit of any inclination, PLANE E

eccentricity, and period. The satellite or-
bital inclination does not affect the satellite

solartime unless errors are made in sensing

the earth. The formulas take the earth's orbit —

eccentricity into aceount to second order, and

=i

are easily extended to higher order,
The reference system used is shown in

I"ig. A-1.  The unit vectors i,j are in the

earth's equatorial plane, and 1 coincides with
the direction of the earth's node. The triad \T

EARTH'S
i, j,k isright-handed. The ecliptic plane E is LINE OF NODES

defined by the direction cosines, eju,, u,, u,j; i
- { 1 "2 3} Fig.A-1. Satellite reference system.

« is the angle between the ecliptic plane 19
and the satellite equatorial plane, U, not shown in the figure; f# is the angle between plane U

and the orbital plane; € and €., are the eccentricities of the satellite and earth orbits, respec-

tively; « - 27 rad/sidereal ye[;n‘; Q2 = satellite orbital radian frequency; @ = 102.25° = argument
of perihelion measured from the earth's nodal line.

The coineidence in time between the output of the earth and sun sensor will occur whep the
projections of the satellite and of the sun differ by &, which is the angular separation between
the earth and sun sensor, and an integer number of rotations.

Then the times of successive coincidences are found to be the solutions of the equation

2(}‘. sin (wt) cos (o) 1
)+ g2 = tan ~ [cos (B) tan (Qt + ¢

1 - s'm2 (ev) sin™ (wt)

)]

-1
tan  [cos («) tan (wt + @

h SO

_2¢€ sin (Qt) cos (B)

2

> + 6 + 2nw : (A-1)
1 —sin” (B) sin™ (Qt)

No loss in generality occurs if one takes 6 - 0, which displaces the time reference.
l.et us now take as a reference for 13q. (A-1) that at which the first coincidence for t - 0,
n - 0 occurs at perihelion for a satellite spin or yaw axis normal to the earth's equatorial plane.

Then Uy = U, - 0 and Ugy 1 in (A-2) and from (A-1),

-1 ¢ :
” — cos («)

S0 L cos (B) i "h'h] K (A-2)
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The expression (A-2) is substituted into (A-1). The times of coincidence are the solutions
of Eq. (A-1) in the unknown t, for different integer values of n.

It is of interest to consider some special cases and to rewrite Eq. (A-1) in ways more con-
venient for the applications.

For a synchronous satellite, the quantities w and Q can be expressed in rad/mean solar
dayas w=2m¢, @ =2r(1+ ¢), and £ = 1/365.27. Measuring the time in mean solar days, it is
more convenient to consider the angular difference A between the satellite and sun projection on

plane U at the end of each successive mean solar day. Then,

ZGF sin (wt) cos ()

N (ps—tan_1 [cos (&) tan (2mEn + ¢, )] - , (A-3)

1 — sin® (a) sin? (wt)
where @ is given by the right side of (A-1) with @ = 27(1 + ¢) and with ?so given by (A-2).

For a synchronous equatorial satellite in a circular orbit with its spin or yaw axis perpen-
dicular to the equatorial plane of the earth, Eq. (A-3) yields an approximate expression for the

sun transit time correction on the earth A being

5
B=0 ¢ = 1/365.27
c=0 h~102.25°
y = s 08, % =~ 0.01675 .
@ o 23450, ug =t

ZLF sin (2m¢ n) cos (n)

1 - sin® (n) sin® (27¢ n)

Ap =2TEnt ¢ - tan [cos (n)tan(2mEén + ¢ )] — (A-4)

125
FFor a synchronous equatorial satellite in a circular orbit with its spin or yaw axis tilted
around the earth's line of nodes, the foregoing values are used, except that, § being the angle

of tilt,

ui—O .

= — sin (¢)

U5

cos {w) = sin(n) sin(¢) + cos(n) cos (¥) = cos(n — ) "
and

e 2¢;. sin(2mgn) cos (n — )
AY = 21¢n + @ o tan ~ [cos{n — ) tan(2T¢n + q‘h)] ity WG T (A-5)
1 — sin” (n — ¢) sin” (27 ¢ n)
Comparing this equation with (A-4), one seces that a rotation of the yaw axis around the
carth's line of nodes is equivalent to a rotation of the plane of the ecliptic around the same line.
This means that the satellite solstices and equinoxes take place on the same day as the earth's,
as is obvious from the fact that the lines of nodes of satellite and earth still coincide. Plots of
angular displacement vs time of the year for this case are shown in I'ig. A-2.
I'or a synchronous equatorial satellite in a circular orbit with its yaw axis tilted around the

normal to the earth's line of nodes, and with x being the angle of tilt,

= —sin(x) . U= 00 |, aus=cesiix). - cos () = cos (x) cos ()

2 3
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and therefore
" -1
AX =+ 27En + s~ tan ~ [cos(n) cos(x)tan(2m¢in + mh)]
ZGF sin (2m& n) cos (x) cos (n)
- o e (A-6)

cos? (2 n) + cos® () cos® (x) sin® (27¢ n)

From (A-1)and Q = 27r(1 + ¢), the eccentricity of the satellite orbit is seen to contribute

the term
2¢€ sin[27(1 + £) n] cos ()

Al =
1 - sinZ(B) sin2 [27(1 + £) n)

(A-T)

This confirms that the eccentricity effeet can be eliminated to second order in ¢ by taking

two measurements of satellite solar time at times n and n + (1/2), being

Ay~ At (],

since ¢ is small.
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APPENDIX B
THE OBSERVABILITY AND CONTROLLABILITY MATRICES
FOR THE SAMPLED CASE

The sampled case equations are given by

x(kT + T) ésf(k'[‘) + I_ssg(kT) , (I3-1)
and the measured vector is

X(k) Cx(k) , (B-2)

where the matrices As and Es are given by Egs. (IV-20), (IV-21), (IV-22) for the different
cases.

The system is again factored into two parts and we can examine both separately.

i. Case T = 27/w (sampling once per orbit)

,

By (B-3)

This is singular so that the sampled system is not controllable from u (Actually, we conld

e
have inferred this from the continuous case.)

l.et us check the case T - 2r/w and u, = 0. Ilere we have
0 0 0 0
0 0 0 0
1;2 (13-4)
—bT — 127 — 187 —24r
w w w w
1 1 i1t 1

and we see that sampling at the rate T = 2r/w has destroyed controllability from u,.
[f we wish to check controllability from both uy and u, together, the relevant matrix is

t From Ref. 27.
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o -
0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0
K, = (B-5)
0 —bn 0 — A 0 —18n 0 — 24
w w w
0 1 0 1 0 1 0 1

which is also singular. Hence, even with both u, and u, available one cannot control if only

one thrust per orbit is used.

The controllability of Xg and Xg from u, is revealed by

3

0 0
(B-6)

K
== 1 1

which is singular and hence indicates a lack of controllability.

The observability picture is as follows. KFrom Xy we have an observability matrix

L (B-7)

|_1 0 0 0

From x, we have an observability matrix of the form

3
0 o 1 0]
—12r 0 1 —6m
w
L, (B-8)
24r 0 9 12
w
36r 0 1 H
w

and from Xy and Ny together we have
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0 o 1 0
1 0o o 0

— b7
—A%r 0 4 -

by

1 0 o 0

oty © 4 —iLw
w
1 0 0 0

— 367 0 1 —18x
w

(B-9)

Clearly none of these matrices is of rank 4 so we cannot observe the inplane components of the

motion using one observation per orbit.
The out-of-plane situation is revealed by
1 0
L
oo

so we see that this motion is not observable either,

ii. Case T - 7/w (sampling twice per orbit)

In this case, the controllability matrices K

i
r &
0 0 4] 0
—1 4 -1 -1
Y
i 0 —_4 0
w w
L 0 0 0 0
& 0 s 0
w w
0 0 0 0
K,
— 37 —br —9r — 97
w w w w
=) 1 it 1
[ a
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(B-10)

(B-11)

(B-12)



4 4
0 = 0 0 0 = 0 0
= 0 1 0 1 0 -1 0
Ky - (13-13)
—&i —3r 0 —bT = — 97 0 — 97
w w w w w w
0 = 0 1 0 =7 0 1

Both 1_\’1 and 52 are singular, but 53 is of rank 4 (the first four columns are independent). tlence,
it is possible to control the in-plane motion by thrusting only twice per orbit, provided that one
has both tangential and radial thrusting capability.
IFor the out-of-plane motion, the situation is not improved, however, because
0 0

Ky = (3-14)
o —1 1

and is not of rank 2.

As far as observability is concerned, we have

1 0o 0 0
7 4@ o X
w
Loy (13-15)
1 0 0 0
7 o o 2
3]
L. e
[ o 0 1 0 ]
G Sl 1 —3r
w w
Lo, (3B-16)
—127 0 A L
w
187 0 1 G
w
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1 0 0 0
0 0 1 0

7 0 0 i

w

: -4 —3r

=67 o d w

Ls (B-17)

1 0 0 0

127 —8w =L

w

7 0 0 £

w

e Az A

w

Only matrix L., is of rank 4 (the first four rows are independent). Ilence the in-plane motion

3
is observable, sampling only twice per orbit if both angle and altitude can be measured.

IYor the out-of-plane motion, we need to examine
1 0
L, (B3-18)
- 10

and we sce that this part of the system is still not observable.

ili. Case T - 7/2w (sampling four times per orbit)

The controllability matrices Ky _liz, and K5 are now given by

i 0 -1 0
w w
0 -1 0 1
51 (B-19)
W w w
-2 0 2 0

54



i 2 4 2 ]
= — = 0
w ) w
2 0 -2 0
52 (13-20)
(— 37 + 8) 3n (—97r_— 8) —br
2w w 2w w
-3 -7 3 1
pd F. -
L] 2 0 i =4 z 0 0
p @ W w w
0 2 —1 0 0 -2 1 0
53 (B-21)
2 (— 37 + 8) —~4 3n 2 (— 97 — 8) brm
- St =il BRI S naica, 0
@ 2w w w w 2w w
2 3 0 -7 2 -3 0 1
= g

In this casc, KZ and l\'% are of rank 4 but I\'1 1s not.  Thus, eontrolling the © dependent
variable only lets one control the entire state if thrusting is done four times per orbit.

I'or the out-ol-plane motion, Ky takes the form
[
K, (13-22)
0 1

Thus this motion ts controllable.

To cheek observability in the four times per orbit sampled case, we need

1 0 0 0
i = @ =
w w
L, (13-23)

7 0 -
W
-
W W

L =
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0 0 1 0
—2 (=37 + 8)
(—37r £ 6) T 1 _—2-—-&)
= B-24
L, (B-24)
—4 — 37
—6Tr T . ©
=2 (—9r — 8)
—9m—6 W ) - 2w
1 0 0 o
0 0 1 0
4 1 Z
w w
-2 (—3r + 8)
(SEme). T 4 pm—
L, (B-25)
7 0o 0 1
w
s — 37
—br = 4 —
4 __1 0 i
w w
—6 (—9r — 8)

Clearly, ]_,_1 is not of rank 4 so we cannot observe the state by looking at altitude alone. How-

ever, I_,& and Lz are of rank 4, so obhservation from 6, and from r and © together, is possible.

The out-of-plane motion is covered by

1 0
1y ; (B-26)
0 pat
w

and it is observable from four samples of ¢ per orbit.
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